Line data Source code
1 : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2 : Copyright (c) 2016-2023 The plumed team
3 : (see the PEOPLE file at the root of the distribution for a list of names)
4 :
5 : See http://www.plumed.org for more information.
6 :
7 : This file is part of plumed, version 2.
8 :
9 : plumed is free software: you can redistribute it and/or modify
10 : it under the terms of the GNU Lesser General Public License as published by
11 : the Free Software Foundation, either version 3 of the License, or
12 : (at your option) any later version.
13 :
14 : plumed is distributed in the hope that it will be useful,
15 : but WITHOUT ANY WARRANTY; without even the implied warranty of
16 : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 : GNU Lesser General Public License for more details.
18 :
19 : You should have received a copy of the GNU Lesser General Public License
20 : along with plumed. If not, see <http://www.gnu.org/licenses/>.
21 : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
22 :
23 : /* This class was originally written by Thomas Loehr */
24 :
25 : #include "Colvar.h"
26 : #include "core/ActionRegister.h"
27 : #include "core/ActionSet.h"
28 : #include "core/PlumedMain.h"
29 : #include "core/GenericMolInfo.h"
30 : #include "tools/Communicator.h"
31 : #include "tools/OpenMP.h"
32 : #include <initializer_list>
33 :
34 : #define INV_PI_SQRT_PI 0.179587122
35 : #define KCAL_TO_KJ 4.184
36 : #define ANG_TO_NM 0.1
37 : #define ANG3_TO_NM3 0.001
38 :
39 : namespace PLMD {
40 : namespace colvar {
41 :
42 : //+PLUMEDOC COLVAR EEFSOLV
43 : /*
44 : Calculates EEF1 solvation free energy for a group of atoms.
45 :
46 : EEF1 is a solvent-accessible surface area based model, where the free energy of solvation is computed using a pairwise interaction term for non-hydrogen atoms:
47 : \f[
48 : \Delta G^\mathrm{solv}_i = \Delta G^\mathrm{ref}_i - \sum_{j \neq i} f_i(r_{ij}) V_j
49 : \f]
50 : where \f$\Delta G^\mathrm{solv}_i\f$ is the free energy of solvation, \f$\Delta G^\mathrm{ref}_i\f$ is the reference solvation free energy, \f$V_j\f$ is the volume of atom \f$j\f$ and
51 : \f[
52 : f_i(r) 4\pi r^2 = \frac{2}{\sqrt{\pi}} \frac{\Delta G^\mathrm{free}_i}{\lambda_i} \exp\left\{ - \frac{(r-R_i)^2}{\lambda^2_i}\right\}
53 : \f]
54 : where \f$\Delta G^\mathrm{free}_i\f$ is the solvation free energy of the isolated group, \f$\lambda_i\f$ is the correlation length equal to the width of the first solvation shell and \f$R_i\f$ is the van der Waals radius of atom \f$i\f$.
55 :
56 : The output from this collective variable, the free energy of solvation, can be used with the \ref BIASVALUE keyword to provide implicit solvation to a system. All parameters are designed to be used with a modified CHARMM36 force field. It takes only non-hydrogen atoms as input, these can be conveniently specified using the \ref GROUP action with the NDX_GROUP parameter. To speed up the calculation, EEFSOLV internally uses a neighbor list with a cutoff dependent on the type of atom (maximum of 1.95 nm). This cutoff can be extended further by using the NL_BUFFER keyword.
57 :
58 : \par Examples
59 :
60 : \plumedfile
61 : #SETTINGS MOLFILE=regtest/basic/rt77/peptide.pdb
62 : MOLINFO MOLTYPE=protein STRUCTURE=peptide.pdb
63 : WHOLEMOLECULES ENTITY0=1-111
64 :
65 : # This allows us to select only non-hydrogen atoms
66 : #SETTINGS AUXFILE=regtest/basic/rt77/index.ndx
67 : protein-h: GROUP NDX_FILE=index.ndx NDX_GROUP=Protein-H
68 :
69 : # We extend the cutoff by 0.1 nm and update the neighbor list every 40 steps
70 : solv: EEFSOLV ATOMS=protein-h
71 :
72 : # Here we actually add our calculated energy back to the potential
73 : bias: BIASVALUE ARG=solv
74 :
75 : PRINT ARG=solv FILE=SOLV
76 : \endplumedfile
77 :
78 : */
79 : //+ENDPLUMEDOC
80 :
81 : class EEFSolv : public Colvar {
82 : private:
83 : bool pbc;
84 : bool serial;
85 : double delta_g_ref;
86 : double nl_buffer;
87 : unsigned nl_stride;
88 : unsigned nl_update;
89 : std::vector<std::vector<unsigned> > nl;
90 : std::vector<std::vector<bool> > nlexpo;
91 : std::vector<std::vector<double> > parameter;
92 : void setupConstants(const std::vector<AtomNumber> &atoms, std::vector<std::vector<double> > ¶meter, bool tcorr);
93 : std::map<std::string, std::map<std::string, std::string> > setupTypeMap();
94 : std::map<std::string, std::vector<double> > setupValueMap();
95 : void update_neighb();
96 :
97 : public:
98 : static void registerKeywords(Keywords& keys);
99 : explicit EEFSolv(const ActionOptions&);
100 : void calculate() override;
101 : };
102 :
103 : PLUMED_REGISTER_ACTION(EEFSolv,"EEFSOLV")
104 :
105 7 : void EEFSolv::registerKeywords(Keywords& keys) {
106 7 : Colvar::registerKeywords(keys);
107 14 : keys.add("atoms", "ATOMS", "The atoms to be included in the calculation, e.g. the whole protein.");
108 14 : keys.add("compulsory", "NL_BUFFER", "0.1", "The buffer to the intrinsic cutoff used when calculating pairwise interactions.");
109 14 : keys.add("compulsory", "NL_STRIDE", "40", "The frequency with which the neighbor list is updated.");
110 14 : keys.addFlag("SERIAL",false,"Perform the calculation in serial - for debug purpose");
111 14 : keys.addFlag("TEMP_CORRECTION", false, "Correct free energy of solvation constants for temperatures different from 298.15 K");
112 14 : keys.setValueDescription("scalar","the EEF1 solvation free energy for the input atoms");
113 7 : }
114 :
115 5 : EEFSolv::EEFSolv(const ActionOptions&ao):
116 : PLUMED_COLVAR_INIT(ao),
117 5 : pbc(true),
118 5 : serial(false),
119 5 : delta_g_ref(0.),
120 5 : nl_buffer(0.1),
121 5 : nl_stride(40),
122 5 : nl_update(0)
123 : {
124 : std::vector<AtomNumber> atoms;
125 10 : parseAtomList("ATOMS", atoms);
126 : const unsigned size = atoms.size();
127 5 : bool tcorr = false;
128 5 : parseFlag("TEMP_CORRECTION", tcorr);
129 5 : parse("NL_BUFFER", nl_buffer);
130 5 : parse("NL_STRIDE", nl_stride);
131 :
132 5 : bool nopbc = !pbc;
133 5 : parseFlag("NOPBC", nopbc);
134 5 : pbc = !nopbc;
135 :
136 5 : parseFlag("SERIAL",serial);
137 :
138 5 : checkRead();
139 :
140 10 : log << " Bibliography " << plumed.cite("Lazaridis T, Karplus M, Proteins Struct. Funct. Genet. 35, 133 (1999)"); log << "\n";
141 :
142 5 : nl.resize(size);
143 5 : nlexpo.resize(size);
144 5 : parameter.resize(size, std::vector<double>(4, 0));
145 5 : setupConstants(atoms, parameter, tcorr);
146 :
147 5 : addValueWithDerivatives();
148 5 : setNotPeriodic();
149 5 : requestAtoms(atoms);
150 5 : }
151 :
152 30 : void EEFSolv::update_neighb() {
153 : const double lower_c2 = 0.24 * 0.24; // this is the cut-off for bonded atoms
154 : const unsigned size = getNumberOfAtoms();
155 :
156 1830 : for (unsigned i=0; i<size; i++) {
157 1800 : nl[i].clear();
158 : nlexpo[i].clear();
159 1800 : const Vector posi = getPosition(i);
160 : // Loop through neighboring atoms, add the ones below cutoff
161 54900 : for (unsigned j=i+1; j<size; j++) {
162 53100 : if(parameter[i][1]==0&¶meter[j][1]==0) continue;
163 51750 : const double d2 = delta(posi, getPosition(j)).modulo2();
164 51750 : if (d2 < lower_c2 && j < i+14) {
165 : // crude approximation for i-i+1/2 interactions,
166 : // we want to exclude atoms separated by less than three bonds
167 2695 : continue;
168 : }
169 : // We choose the maximum lambda value and use a more conservative cutoff
170 49055 : double mlambda = 1./parameter[i][2];
171 49055 : if (1./parameter[j][2] > mlambda) mlambda = 1./parameter[j][2];
172 49055 : const double c2 = (2. * mlambda + nl_buffer) * (2. * mlambda + nl_buffer);
173 49055 : if (d2 < c2 ) {
174 26069 : nl[i].push_back(j);
175 26069 : if(parameter[i][2] == parameter[j][2] && parameter[i][3] == parameter[j][3]) {
176 5175 : nlexpo[i].push_back(true);
177 20894 : } else nlexpo[i].push_back(false);
178 : }
179 : }
180 : }
181 30 : }
182 :
183 30 : void EEFSolv::calculate() {
184 30 : if(pbc) makeWhole();
185 30 : if(getExchangeStep()) nl_update = 0;
186 30 : if(nl_update==0) update_neighb();
187 :
188 : const unsigned size=getNumberOfAtoms();
189 30 : double bias = 0.0;
190 30 : std::vector<Vector> deriv(size, Vector(0,0,0));
191 :
192 : unsigned stride;
193 : unsigned rank;
194 30 : if(serial) {
195 : stride=1;
196 : rank=0;
197 : } else {
198 30 : stride=comm.Get_size();
199 30 : rank=comm.Get_rank();
200 : }
201 :
202 30 : unsigned nt=OpenMP::getNumThreads();
203 30 : if(nt*stride*10>size) nt=1;
204 :
205 30 : #pragma omp parallel num_threads(nt)
206 : {
207 : std::vector<Vector> deriv_omp(size, Vector(0,0,0));
208 : #pragma omp for reduction(+:bias) nowait
209 : for (unsigned i=rank; i<size; i+=stride) {
210 : const Vector posi = getPosition(i);
211 : double fedensity = 0.0;
212 : Vector deriv_i;
213 : const double vdw_volume_i = parameter[i][0];
214 : const double delta_g_free_i = parameter[i][1];
215 : const double inv_lambda_i = parameter[i][2];
216 : const double vdw_radius_i = parameter[i][3];
217 :
218 : // The pairwise interactions are unsymmetric, but we can get away with calculating the distance only once
219 : for (unsigned i_nl=0; i_nl<nl[i].size(); i_nl++) {
220 : const unsigned j = nl[i][i_nl];
221 : const double vdw_volume_j = parameter[j][0];
222 : const double delta_g_free_j = parameter[j][1];
223 : const double inv_lambda_j = parameter[j][2];
224 : const double vdw_radius_j = parameter[j][3];
225 :
226 : const Vector dist = delta(posi, getPosition(j));
227 : const double rij = dist.modulo();
228 : const double inv_rij = 1.0 / rij;
229 : const double inv_rij2 = inv_rij * inv_rij;
230 : const double fact_ij = inv_rij2 * delta_g_free_i * vdw_volume_j * INV_PI_SQRT_PI * inv_lambda_i;
231 : const double fact_ji = inv_rij2 * delta_g_free_j * vdw_volume_i * INV_PI_SQRT_PI * inv_lambda_j;
232 :
233 : // in this case we can calculate a single exponential
234 : if(!nlexpo[i][i_nl]) {
235 : // i-j interaction
236 : if(inv_rij > 0.5*inv_lambda_i && delta_g_free_i!=0.)
237 : {
238 : const double e_arg = (rij - vdw_radius_i)*inv_lambda_i;
239 : const double expo = std::exp(-e_arg*e_arg);
240 : const double fact = expo*fact_ij;
241 : const double e_deriv = inv_rij*fact*(inv_rij + e_arg*inv_lambda_i);
242 : const Vector dd = e_deriv*dist;
243 : fedensity += fact;
244 : deriv_i += dd;
245 : if(nt>1) deriv_omp[j] -= dd;
246 : else deriv[j] -= dd;
247 : }
248 :
249 : // j-i interaction
250 : if(inv_rij > 0.5*inv_lambda_j && delta_g_free_j!=0.)
251 : {
252 : const double e_arg = (rij - vdw_radius_j)*inv_lambda_j;
253 : const double expo = std::exp(-e_arg*e_arg);
254 : const double fact = expo*fact_ji;
255 : const double e_deriv = inv_rij*fact*(inv_rij + e_arg*inv_lambda_j);
256 : const Vector dd = e_deriv*dist;
257 : fedensity += fact;
258 : deriv_i += dd;
259 : if(nt>1) deriv_omp[j] -= dd;
260 : else deriv[j] -= dd;
261 : }
262 : } else {
263 : // i-j interaction
264 : if(inv_rij > 0.5*inv_lambda_i)
265 : {
266 : const double e_arg = (rij - vdw_radius_i)*inv_lambda_i;
267 : const double expo = std::exp(-e_arg*e_arg);
268 : const double fact = expo*(fact_ij + fact_ji);
269 : const double e_deriv = inv_rij*fact*(inv_rij + e_arg*inv_lambda_i);
270 : const Vector dd = e_deriv*dist;
271 : fedensity += fact;
272 : deriv_i += dd;
273 : if(nt>1) deriv_omp[j] -= dd;
274 : else deriv[j] -= dd;
275 : }
276 : }
277 :
278 : }
279 : if(nt>1) deriv_omp[i] += deriv_i;
280 : else deriv[i] += deriv_i;
281 : bias += 0.5*fedensity;
282 : }
283 : #pragma omp critical
284 : if(nt>1) for(unsigned i=0; i<size; i++) deriv[i]+=deriv_omp[i];
285 : }
286 :
287 30 : if(!serial) {
288 30 : comm.Sum(bias);
289 30 : if(!deriv.empty()) comm.Sum(&deriv[0][0],3*deriv.size());
290 : }
291 :
292 30 : Tensor virial;
293 1830 : for(unsigned i=0; i<size; i++) {
294 1800 : setAtomsDerivatives(i, -deriv[i]);
295 1800 : virial += Tensor(getPosition(i), -deriv[i]);
296 : }
297 30 : setBoxDerivatives(-virial);
298 30 : setValue(delta_g_ref - bias);
299 :
300 : // Keep track of the neighbourlist updates
301 30 : nl_update++;
302 30 : if (nl_update == nl_stride) {
303 30 : nl_update = 0;
304 : }
305 30 : }
306 :
307 5 : void EEFSolv::setupConstants(const std::vector<AtomNumber> &atoms, std::vector<std::vector<double> > ¶meter, bool tcorr) {
308 : std::vector<std::vector<double> > parameter_temp;
309 10 : parameter_temp.resize(atoms.size(), std::vector<double>(7,0));
310 : std::map<std::string, std::vector<double> > valuemap;
311 : std::map<std::string, std::map<std::string, std::string> > typemap;
312 5 : valuemap = setupValueMap();
313 5 : typemap = setupTypeMap();
314 5 : auto * moldat = plumed.getActionSet().selectLatest<GenericMolInfo*>(this);
315 : bool cter=false;
316 5 : if (moldat) {
317 5 : log<<" MOLINFO DATA found with label " <<moldat->getLabel()<<", using proper atom names\n";
318 305 : for(unsigned i=0; i<atoms.size(); ++i) {
319 :
320 : // Get atom and residue names
321 300 : std::string Aname = moldat->getAtomName(atoms[i]);
322 300 : std::string Rname = moldat->getResidueName(atoms[i]);
323 300 : std::string Atype = typemap[Rname][Aname];
324 :
325 : // Check for terminal COOH or COO- (different atomtypes & parameters!)
326 598 : if (Aname == "OT1" || Aname == "OXT") {
327 : // We create a temporary AtomNumber object to access future atoms
328 : unsigned ai = atoms[i].index();
329 : AtomNumber tmp_an;
330 2 : tmp_an.setIndex(ai + 2);
331 2 : if (moldat->checkForAtom(tmp_an) && moldat->getAtomName(tmp_an) == "HT2") {
332 : // COOH
333 : Atype = "OB";
334 : } else {
335 : // COO-
336 : Atype = "OC";
337 : }
338 : cter = true;
339 : }
340 302 : if (Aname == "OT2" || (cter == true && Aname == "O")) {
341 : unsigned ai = atoms[i].index();
342 : AtomNumber tmp_an;
343 2 : tmp_an.setIndex(ai + 1);
344 2 : if (moldat->checkForAtom(tmp_an) && moldat->getAtomName(tmp_an) == "HT2") {
345 : // COOH
346 : Atype = "OH1";
347 : } else {
348 : // COO-
349 : Atype = "OC";
350 : }
351 : }
352 :
353 : // Check for H-atoms
354 : char type;
355 300 : char first = Aname.at(0);
356 :
357 : // GOLDEN RULE: type is first letter, if not a number
358 300 : if (!isdigit(first)) {
359 : type = first;
360 : // otherwise is the second
361 : } else {
362 0 : type = Aname.at(1);
363 : }
364 :
365 300 : if (type == 'H') {
366 0 : error("EEF1-SB does not allow the use of hydrogen atoms!\n");
367 : }
368 :
369 : // Lookup atomtype in table or throw exception if its not there
370 : try {
371 300 : parameter_temp[i] = valuemap.at(Atype);
372 0 : } catch (const std::exception &e) {
373 0 : log << "Type: " << Atype << " Name: " << Aname << " Residue: " << Rname << "\n";
374 0 : error("Invalid atom type!\n");
375 0 : }
376 :
377 : // Temperature correction
378 300 : if (tcorr && parameter[i][1] > 0.0) {
379 : const double t0 = 298.15;
380 0 : const double delta_g_ref_t0 = parameter_temp[i][1];
381 0 : const double delta_h_ref_t0 = parameter_temp[i][3];
382 0 : const double delta_cp = parameter_temp[i][4];
383 0 : const double delta_s_ref_t0 = (delta_h_ref_t0 - delta_g_ref_t0) / t0;
384 0 : const double t = getkBT() / getKBoltzmann();
385 0 : parameter_temp[i][1] -= delta_s_ref_t0 * (t - t0) - delta_cp * t * std::log(t / t0) + delta_cp * (t - t0);
386 0 : parameter_temp[i][2] *= parameter_temp[i][1] / delta_g_ref_t0;
387 : }
388 300 : parameter[i][0] = parameter_temp[i][0];
389 300 : parameter[i][1] = parameter_temp[i][2];
390 300 : parameter[i][2] = parameter_temp[i][5];
391 300 : parameter[i][3] = parameter_temp[i][6];
392 : }
393 : } else {
394 0 : error("MOLINFO DATA not found\n");
395 : }
396 305 : for(unsigned i=0; i<atoms.size(); ++i) delta_g_ref += parameter_temp[i][1];
397 5 : }
398 :
399 5 : std::map<std::string, std::map<std::string, std::string> > EEFSolv::setupTypeMap() {
400 : std::map<std::string, std::map<std::string, std::string> > typemap;
401 10 : typemap["ACE"] = {
402 : {"CH3", "CT3"},
403 : {"HH31","HA3"},
404 : {"HH32","HA3"},
405 : {"HH33","HA3"},
406 : {"C", "C" },
407 : {"O", "O" }
408 40 : };
409 10 : typemap["ALA"] = {
410 : {"N", "NH1"},
411 : {"HN", "H" },
412 : {"CA", "CT1"},
413 : {"HA", "HB1"},
414 : {"CB", "CT3"},
415 : {"HB1", "HA3"},
416 : {"HB2", "HA3"},
417 : {"HB3", "HA3"},
418 : {"C", "C" },
419 : {"O", "O" }
420 60 : };
421 10 : typemap["ARG"] = {
422 : {"N", "NH1"},
423 : {"HN", "H" },
424 : {"CA", "CT1"},
425 : {"HA", "HB1"},
426 : {"CB", "CT2"},
427 : {"HB1", "HA2"},
428 : {"HB2", "HA2"},
429 : {"CG", "CT2"},
430 : {"HG1", "HA2"},
431 : {"HG2", "HA2"},
432 : {"CD", "CT2"},
433 : {"HD1", "HA2"},
434 : {"HD2", "HA2"},
435 : {"NE", "NC2"},
436 : {"HE", "HC" },
437 : {"CZ", "C" },
438 : {"NH1", "NC2"},
439 : {"HH11", "HC" },
440 : {"HH12", "HC" },
441 : {"NH2", "NC2"},
442 : {"HH21", "HC" },
443 : {"HH22", "HC" },
444 : {"C", "C" },
445 : {"O", "O" }
446 130 : };
447 10 : typemap["ASN"] = {
448 : {"N", "NH1"},
449 : {"HN", "H" },
450 : {"CA", "CT1"},
451 : {"HA", "HB1"},
452 : {"CB", "CT2"},
453 : {"HB1", "HA2"},
454 : {"HB2", "HA2"},
455 : {"CG", "CC" },
456 : {"OD1", "O" },
457 : {"ND2", "NH2"},
458 : {"HD21", "H" },
459 : {"HD22", "H" },
460 : {"C", "C" },
461 : {"O", "O" }
462 80 : };
463 10 : typemap["ASPP"] = {
464 : {"N", "NH1"},
465 : {"HN", "H" },
466 : {"CA", "CT1"},
467 : {"HA", "HB1"},
468 : {"CB", "CT2"},
469 : {"HB1", "HA2"},
470 : {"HB2", "HA2"},
471 : {"CG", "CD" },
472 : {"OD1", "OB" },
473 : {"OD2", "OH1"},
474 : {"HD2", "H" },
475 : {"C", "C" },
476 : {"O", "O" }
477 75 : };
478 10 : typemap["ASP"] = {
479 : {"N", "NH1"},
480 : {"HN", "H" },
481 : {"CA", "CT1"},
482 : {"HA", "HB1"},
483 : {"CB", "CT2"},
484 : {"HB1", "HA2"},
485 : {"HB2", "HA2"},
486 : {"CG", "CC" },
487 : {"OD1", "OC" },
488 : {"OD2", "OC" },
489 : {"C", "C" },
490 : {"O", "O" }
491 70 : };
492 10 : typemap["CYS"] = {
493 : {"N", "NH1"},
494 : {"HN", "H" },
495 : {"CA", "CT1"},
496 : {"HA", "HB1"},
497 : {"CB", "CT2"},
498 : {"HB1", "HA2"},
499 : {"HB2", "HA2"},
500 : {"SG", "S" },
501 : {"HG1", "HS" },
502 : {"C", "C" },
503 : {"O", "O" }
504 65 : };
505 10 : typemap["GLN"] = {
506 : {"N", "NH1" },
507 : {"HN", "H" },
508 : {"CA", "CT1" },
509 : {"HA", "HB1" },
510 : {"CB", "CT2" },
511 : {"HB1", "HA2" },
512 : {"HB2", "HA2" },
513 : {"CG", "CT2" },
514 : {"HG1", "HA2" },
515 : {"HG2", "HA2" },
516 : {"CD", "CC" },
517 : {"OE1", "O" },
518 : {"NE2", "NH2" },
519 : {"HE21", "H" },
520 : {"HE22", "H" },
521 : {"C", "C" },
522 : {"O", "O" }
523 95 : };
524 10 : typemap["GLUP"] = {
525 : {"N", "NH1"},
526 : {"HN", "H" },
527 : {"CA", "CT1"},
528 : {"HA", "HB1"},
529 : {"CB", "CT2"},
530 : {"HB1", "HA2"},
531 : {"HB2", "HA2"},
532 : {"CG", "CT2"},
533 : {"HG1", "HA2"},
534 : {"HG2", "HA2"},
535 : {"CD", "CD" },
536 : {"OE1", "OB" },
537 : {"OE2", "OH1"},
538 : {"HE2", "H" },
539 : {"C", "C" },
540 : {"O", "O" }
541 90 : };
542 10 : typemap["GLU"] = {
543 : {"N", "NH1"},
544 : {"HN", "H" },
545 : {"CA", "CT1"},
546 : {"HA", "HB1"},
547 : {"CB", "CT2"},
548 : {"HB1", "HA2"},
549 : {"HB2", "HA2"},
550 : {"CG", "CT2"},
551 : {"HG1", "HA2"},
552 : {"HG2", "HA2"},
553 : {"CD", "CC" },
554 : {"OE1", "OC" },
555 : {"OE2", "OC" },
556 : {"C", "C" },
557 : {"O", "O" }
558 85 : };
559 10 : typemap["GLY"] = {
560 : {"N", "NH1"},
561 : {"HN", "H" },
562 : {"CA", "CT2"},
563 : {"HA1", "HB2"},
564 : {"HA2", "HB2"},
565 : {"C", "C" },
566 : {"O", "O" }
567 45 : };
568 10 : typemap["HSD"] = {
569 : {"N", "NH1"},
570 : {"HN", "H" },
571 : {"CA", "CT1"},
572 : {"HA", "HB1"},
573 : {"CB", "CT2"},
574 : {"HB1", "HA2"},
575 : {"HB2", "HA2"},
576 : {"ND1", "NR1"},
577 : {"HD1", "H" },
578 : {"CG", "CPH1"},
579 : {"CE1", "CPH2"},
580 : {"HE1", "HR1"},
581 : {"NE2", "NR2"},
582 : {"CD2", "CPH1"},
583 : {"HD2", "HR3"},
584 : {"C", "C" },
585 : {"O", "O" }
586 95 : };
587 10 : typemap["HIS"] = {
588 : {"N", "NH1"},
589 : {"HN", "H" },
590 : {"CA", "CT1"},
591 : {"HA", "HB1"},
592 : {"CB", "CT2"},
593 : {"HB1", "HA2"},
594 : {"HB2", "HA2"},
595 : {"ND1", "NR2"},
596 : {"CG", "CPH1"},
597 : {"CE1", "CPH2"},
598 : {"HE1", "HR1"},
599 : {"NE2", "NR1"},
600 : {"HE2", "H" },
601 : {"CD2", "CPH1"},
602 : {"HD2", "HR3"},
603 : {"C", "C" },
604 : {"O", "O" }
605 95 : };
606 10 : typemap["HSE"] = {
607 : {"N", "NH1"},
608 : {"HN", "H" },
609 : {"CA", "CT1"},
610 : {"HA", "HB1"},
611 : {"CB", "CT2"},
612 : {"HB1", "HA2"},
613 : {"HB2", "HA2"},
614 : {"ND1", "NR2"},
615 : {"CG", "CPH1"},
616 : {"CE1", "CPH2"},
617 : {"HE1", "HR1"},
618 : {"NE2", "NR1"},
619 : {"HE2", "H" },
620 : {"CD2", "CPH1"},
621 : {"HD2", "HR3"},
622 : {"C", "C" },
623 : {"O", "O" }
624 95 : };
625 10 : typemap["HSP"] = {
626 : {"N", "NH1"},
627 : {"HN", "H" },
628 : {"CA", "CT1"},
629 : {"HA", "HB1"},
630 : {"CB", "CT2"},
631 : {"HB1", "HA2"},
632 : {"HB2", "HA2"},
633 : {"CD2", "CPH1"},
634 : {"HD2", "HR1"},
635 : {"CG", "CPH1"},
636 : {"NE2", "NR3"},
637 : {"HE2", "H" },
638 : {"ND1", "NR3"},
639 : {"HD1", "H" },
640 : {"CE1", "CPH2"},
641 : {"HE1", "HR2"},
642 : {"C", "C" },
643 : {"O", "O" }
644 100 : };
645 10 : typemap["ILE"] = {
646 : {"N", "NH1"},
647 : {"HN", "H" },
648 : {"CA", "CT1"},
649 : {"HA", "HB1"},
650 : {"CB", "CT1"},
651 : {"HB", "HA1"},
652 : {"CG2", "CT3"},
653 : {"HG21", "HA3"},
654 : {"HG22", "HA3"},
655 : {"HG23", "HA3"},
656 : {"CG1", "CT2"},
657 : {"HG11", "HA2"},
658 : {"HG12", "HA2"},
659 : {"CD", "CT3"},
660 : {"HD1", "HA3"},
661 : {"HD2", "HA3"},
662 : {"HD3", "HA3"},
663 : {"C", "C" },
664 : {"O", "O" }
665 105 : };
666 10 : typemap["LEU"] = {
667 : {"N", "NH1"},
668 : {"HN", "H" },
669 : {"CA", "CT1"},
670 : {"HA", "HB1"},
671 : {"CB", "CT2"},
672 : {"HB1", "HA2"},
673 : {"HB2", "HA2"},
674 : {"CG", "CT1"},
675 : {"HG", "HA1"},
676 : {"CD1", "CT3"},
677 : {"HD11", "HA3"},
678 : {"HD12", "HA3"},
679 : {"HD13", "HA3"},
680 : {"CD2", "CT3"},
681 : {"HD21", "HA3"},
682 : {"HD22", "HA3"},
683 : {"HD23", "HA3"},
684 : {"C", "C" },
685 : {"O", "O" }
686 105 : };
687 10 : typemap["LYS"] = {
688 : {"N", "NH1"},
689 : {"HN", "H" },
690 : {"CA", "CT1"},
691 : {"HA", "HB1"},
692 : {"CB", "CT2"},
693 : {"HB1", "HA2"},
694 : {"HB2", "HA2"},
695 : {"CG", "CT2"},
696 : {"HG1", "HA2"},
697 : {"HG2", "HA2"},
698 : {"CD", "CT2"},
699 : {"HD1", "HA2"},
700 : {"HD2", "HA2"},
701 : {"CE", "CT2"},
702 : {"HE1", "HA2"},
703 : {"HE2", "HA2"},
704 : {"NZ", "NH3"},
705 : {"HZ1", "HC" },
706 : {"HZ2", "HC" },
707 : {"HZ3", "HC" },
708 : {"C", "C" },
709 : {"O", "O" }
710 120 : };
711 10 : typemap["MET"] = {
712 : {"N", "NH1"},
713 : {"HN", "H" },
714 : {"CA", "CT1"},
715 : {"HA", "HB1"},
716 : {"CB", "CT2"},
717 : {"HB1", "HA2"},
718 : {"HB2", "HA2"},
719 : {"CG", "CT2"},
720 : {"HG1", "HA2"},
721 : {"HG2", "HA2"},
722 : {"SD", "S" },
723 : {"CE", "CT3"},
724 : {"HE1", "HA3"},
725 : {"HE2", "HA3"},
726 : {"HE3", "HA3"},
727 : {"C", "C" },
728 : {"O", "O" }
729 95 : };
730 10 : typemap["NMA"] = {
731 : {"N", "NH1"},
732 : {"HN", "H" },
733 : {"CH3", "CT3"},
734 : {"HH31","HA3"},
735 : {"HH32","HA3"},
736 : {"HH33","HA3"},
737 40 : };
738 10 : typemap["PHE"] = {
739 : {"N", "NH1"},
740 : {"HN", "H" },
741 : {"CA", "CT1"},
742 : {"HA", "HB1"},
743 : {"CB", "CT2"},
744 : {"HB1", "HA2"},
745 : {"HB2", "HA2"},
746 : {"CG", "CA" },
747 : {"CD1", "CA" },
748 : {"HD1", "HP" },
749 : {"CE1", "CA" },
750 : {"HE1", "HP" },
751 : {"CZ", "CA" },
752 : {"HZ", "HP" },
753 : {"CD2", "CA" },
754 : {"HD2", "HP" },
755 : {"CE2", "CA" },
756 : {"HE2", "HP" },
757 : {"C", "C" },
758 : {"O", "O" }
759 110 : };
760 10 : typemap["PRO"] = {
761 : {"N", "N" },
762 : {"CD", "CP3"},
763 : {"HD1", "HA2"},
764 : {"HD2", "HA2"},
765 : {"CA", "CP1"},
766 : {"HA", "HB1"},
767 : {"CB", "CP2"},
768 : {"HB1", "HA2"},
769 : {"HB2", "HA2"},
770 : {"CG", "CP2"},
771 : {"HG1", "HA2"},
772 : {"HG2", "HA2"},
773 : {"C", "C" },
774 : {"O", "O" }
775 80 : };
776 10 : typemap["SER"] = {
777 : {"N", "NH1"},
778 : {"HN", "H" },
779 : {"CA", "CT1"},
780 : {"HA", "HB1"},
781 : {"CB", "CT2"},
782 : {"HB1", "HA2"},
783 : {"HB2", "HA2"},
784 : {"OG", "OH1"},
785 : {"HG1", "H" },
786 : {"C", "C" },
787 : {"O", "O" }
788 65 : };
789 10 : typemap["THR"] = {
790 : {"N", "NH1"},
791 : {"HN", "H" },
792 : {"CA", "CT1"},
793 : {"HA", "HB1"},
794 : {"CB", "CT1"},
795 : {"HB", "HA1"},
796 : {"OG1", "OH1"},
797 : {"HG1", "H" },
798 : {"CG2", "CT3"},
799 : {"HG21", "HA3"},
800 : {"HG22", "HA3"},
801 : {"HG23", "HA3"},
802 : {"C", "C" },
803 : {"O", "O" }
804 80 : };
805 10 : typemap["TRP"] = {
806 : {"N", "NH1"},
807 : {"HN", "H" },
808 : {"CA", "CT1"},
809 : {"HA", "HB1"},
810 : {"CB", "CT2"},
811 : {"HB1", "HA2"},
812 : {"HB2", "HA2"},
813 : {"CG", "CY" },
814 : {"CD1", "CA" },
815 : {"HD1", "HP" },
816 : {"NE1", "NY" },
817 : {"HE1", "H" },
818 : {"CE2", "CPT"},
819 : {"CD2", "CPT"},
820 : {"CE3", "CAI"},
821 : {"HE3", "HP" },
822 : {"CZ3", "CA" },
823 : {"HZ3", "HP" },
824 : {"CZ2", "CAI"},
825 : {"HZ2", "HP" },
826 : {"CH2", "CA" },
827 : {"HH2", "HP" },
828 : {"C", "C" },
829 : {"O", "O" }
830 130 : };
831 10 : typemap["TYR"] = {
832 : {"N", "NH1"},
833 : {"HN", "H" },
834 : {"CA", "CT1"},
835 : {"HA", "HB1"},
836 : {"CB", "CT2"},
837 : {"HB1", "HA2"},
838 : {"HB2", "HA2"},
839 : {"CG", "CA" },
840 : {"CD1", "CA" },
841 : {"HD1", "HP" },
842 : {"CE1", "CA" },
843 : {"HE1", "HP" },
844 : {"CZ", "CA" },
845 : {"OH", "OH1"},
846 : {"HH", "H" },
847 : {"CD2", "CA" },
848 : {"HD2", "HP" },
849 : {"CE2", "CA" },
850 : {"HE2", "HP" },
851 : {"C", "C" },
852 : {"O", "O" }
853 115 : };
854 10 : typemap["VAL"] = {
855 : {"N", "NH1"},
856 : {"HN", "H" },
857 : {"CA", "CT1"},
858 : {"HA", "HB1"},
859 : {"CB", "CT1"},
860 : {"HB", "HA1"},
861 : {"CG1", "CT3"},
862 : {"HG11", "HA3"},
863 : {"HG12", "HA3"},
864 : {"HG13", "HA3"},
865 : {"CG2", "CT3"},
866 : {"HG21", "HA3"},
867 : {"HG22", "HA3"},
868 : {"HG23", "HA3"},
869 : {"C", "C" },
870 : {"O", "O" }
871 90 : };
872 5 : return typemap;
873 : }
874 :
875 5 : std::map<std::string, std::vector<double> > EEFSolv::setupValueMap() {
876 : // Volume ∆Gref ∆Gfree ∆H ∆Cp λ vdw_radius
877 : std::map<std::string, std::vector<double> > valuemap;
878 5 : valuemap["C"] = {
879 : ANG3_TO_NM3 * 14.720,
880 : KCAL_TO_KJ * 0.000,
881 : KCAL_TO_KJ * 0.000,
882 : KCAL_TO_KJ * 0.000,
883 : KCAL_TO_KJ * 0.0,
884 : 1. / (ANG_TO_NM * 3.5),
885 : 0.20,
886 10 : };
887 5 : valuemap["CD"] = {
888 : ANG3_TO_NM3 * 14.720,
889 : KCAL_TO_KJ * 0.000,
890 : KCAL_TO_KJ * 0.000,
891 : KCAL_TO_KJ * 0.000,
892 : KCAL_TO_KJ * 0.0,
893 : 1. / (ANG_TO_NM * 3.5),
894 : 0.20,
895 10 : };
896 5 : valuemap["CT1"] = {
897 : ANG3_TO_NM3 * 11.507,
898 : KCAL_TO_KJ * -0.187,
899 : KCAL_TO_KJ * -0.187,
900 : KCAL_TO_KJ * 0.876,
901 : KCAL_TO_KJ * 0.0,
902 : 1. / (ANG_TO_NM * 3.5),
903 : 0.20,
904 10 : };
905 5 : valuemap["CT2"] = {
906 : ANG3_TO_NM3 * 18.850,
907 : KCAL_TO_KJ * 0.372,
908 : KCAL_TO_KJ * 0.372,
909 : KCAL_TO_KJ * -0.610,
910 : KCAL_TO_KJ * 18.6,
911 : 1. / (ANG_TO_NM * 3.5),
912 : 0.20,
913 10 : };
914 5 : valuemap["CT2A"] = {
915 : ANG3_TO_NM3 * 18.666,
916 : KCAL_TO_KJ * 0.372,
917 : KCAL_TO_KJ * 0.372,
918 : KCAL_TO_KJ * -0.610,
919 : KCAL_TO_KJ * 18.6,
920 : 1. / (ANG_TO_NM * 3.5),
921 : 0.20,
922 10 : };
923 5 : valuemap["CT3"] = {
924 : ANG3_TO_NM3 * 27.941,
925 : KCAL_TO_KJ * 1.089,
926 : KCAL_TO_KJ * 1.089,
927 : KCAL_TO_KJ * -1.779,
928 : KCAL_TO_KJ * 35.6,
929 : 1. / (ANG_TO_NM * 3.5),
930 : 0.204,
931 10 : };
932 5 : valuemap["CPH1"] = {
933 : ANG3_TO_NM3 * 5.275,
934 : KCAL_TO_KJ * 0.057,
935 : KCAL_TO_KJ * 0.080,
936 : KCAL_TO_KJ * -0.973,
937 : KCAL_TO_KJ * 6.9,
938 : 1. / (ANG_TO_NM * 3.5),
939 : 0.18,
940 10 : };
941 5 : valuemap["CPH2"] = {
942 : ANG3_TO_NM3 * 11.796,
943 : KCAL_TO_KJ * 0.057,
944 : KCAL_TO_KJ * 0.080,
945 : KCAL_TO_KJ * -0.973,
946 : KCAL_TO_KJ * 6.9,
947 : 1. / (ANG_TO_NM * 3.5),
948 : 0.18,
949 10 : };
950 5 : valuemap["CPT"] = {
951 : ANG3_TO_NM3 * 4.669,
952 : KCAL_TO_KJ * -0.890,
953 : KCAL_TO_KJ * -0.890,
954 : KCAL_TO_KJ * 2.220,
955 : KCAL_TO_KJ * 6.9,
956 : 1. / (ANG_TO_NM * 3.5),
957 : 0.186,
958 10 : };
959 5 : valuemap["CY"] = {
960 : ANG3_TO_NM3 * 10.507,
961 : KCAL_TO_KJ * -0.890,
962 : KCAL_TO_KJ * -0.890,
963 : KCAL_TO_KJ * 2.220,
964 : KCAL_TO_KJ * 6.9,
965 : 1. / (ANG_TO_NM * 3.5),
966 : 0.199,
967 10 : };
968 5 : valuemap["CP1"] = {
969 : ANG3_TO_NM3 * 25.458,
970 : KCAL_TO_KJ * -0.187,
971 : KCAL_TO_KJ * -0.187,
972 : KCAL_TO_KJ * 0.876,
973 : KCAL_TO_KJ * 0.0,
974 : 1. / (ANG_TO_NM * 3.5),
975 : 0.227,
976 10 : };
977 5 : valuemap["CP2"] = {
978 : ANG3_TO_NM3 * 19.880,
979 : KCAL_TO_KJ * 0.372,
980 : KCAL_TO_KJ * 0.372,
981 : KCAL_TO_KJ * -0.610,
982 : KCAL_TO_KJ * 18.6,
983 : 1. / (ANG_TO_NM * 3.5),
984 : 0.217,
985 10 : };
986 5 : valuemap["CP3"] = {
987 : ANG3_TO_NM3 * 26.731,
988 : KCAL_TO_KJ * 0.372,
989 : KCAL_TO_KJ * 0.372,
990 : KCAL_TO_KJ * -0.610,
991 : KCAL_TO_KJ * 18.6,
992 : 1. / (ANG_TO_NM * 3.5),
993 : 0.217,
994 10 : };
995 5 : valuemap["CC"] = {
996 : ANG3_TO_NM3 * 16.539,
997 : KCAL_TO_KJ * 0.000,
998 : KCAL_TO_KJ * 0.000,
999 : KCAL_TO_KJ * 0.000,
1000 : KCAL_TO_KJ * 0.0,
1001 : 1. / (ANG_TO_NM * 3.5),
1002 : 0.20,
1003 10 : };
1004 5 : valuemap["CAI"] = {
1005 : ANG3_TO_NM3 * 18.249,
1006 : KCAL_TO_KJ * 0.057,
1007 : KCAL_TO_KJ * 0.057,
1008 : KCAL_TO_KJ * -0.973,
1009 : KCAL_TO_KJ * 6.9,
1010 : 1. / (ANG_TO_NM * 3.5),
1011 : 0.199,
1012 10 : };
1013 5 : valuemap["CA"] = {
1014 : ANG3_TO_NM3 * 18.249,
1015 : KCAL_TO_KJ * 0.057,
1016 : KCAL_TO_KJ * 0.057,
1017 : KCAL_TO_KJ * -0.973,
1018 : KCAL_TO_KJ * 6.9,
1019 : 1. / (ANG_TO_NM * 3.5),
1020 : 0.199,
1021 10 : };
1022 5 : valuemap["N"] = {
1023 : ANG3_TO_NM3 * 0.000,
1024 : KCAL_TO_KJ * -1.000,
1025 : KCAL_TO_KJ * -1.000,
1026 : KCAL_TO_KJ * -1.250,
1027 : KCAL_TO_KJ * 8.8,
1028 : 1. / (ANG_TO_NM * 3.5),
1029 : 0.185,
1030 10 : };
1031 5 : valuemap["NR1"] = {
1032 : ANG3_TO_NM3 * 15.273,
1033 : KCAL_TO_KJ * -5.950,
1034 : KCAL_TO_KJ * -5.950,
1035 : KCAL_TO_KJ * -9.059,
1036 : KCAL_TO_KJ * -8.8,
1037 : 1. / (ANG_TO_NM * 3.5),
1038 : 0.185,
1039 10 : };
1040 5 : valuemap["NR2"] = {
1041 : ANG3_TO_NM3 * 15.111,
1042 : KCAL_TO_KJ * -3.820,
1043 : KCAL_TO_KJ * -3.820,
1044 : KCAL_TO_KJ * -4.654,
1045 : KCAL_TO_KJ * -8.8,
1046 : 1. / (ANG_TO_NM * 3.5),
1047 : 0.185,
1048 10 : };
1049 5 : valuemap["NR3"] = {
1050 : ANG3_TO_NM3 * 15.071,
1051 : KCAL_TO_KJ * -5.950,
1052 : KCAL_TO_KJ * -5.950,
1053 : KCAL_TO_KJ * -9.059,
1054 : KCAL_TO_KJ * -8.8,
1055 : 1. / (ANG_TO_NM * 3.5),
1056 : 0.185,
1057 10 : };
1058 5 : valuemap["NH1"] = {
1059 : ANG3_TO_NM3 * 10.197,
1060 : KCAL_TO_KJ * -5.950,
1061 : KCAL_TO_KJ * -5.950,
1062 : KCAL_TO_KJ * -9.059,
1063 : KCAL_TO_KJ * -8.8,
1064 : 1. / (ANG_TO_NM * 3.5),
1065 : 0.185,
1066 10 : };
1067 5 : valuemap["NH2"] = {
1068 : ANG3_TO_NM3 * 18.182,
1069 : KCAL_TO_KJ * -5.950,
1070 : KCAL_TO_KJ * -5.950,
1071 : KCAL_TO_KJ * -9.059,
1072 : KCAL_TO_KJ * -8.8,
1073 : 1. / (ANG_TO_NM * 3.5),
1074 : 0.185,
1075 10 : };
1076 5 : valuemap["NH3"] = {
1077 : ANG3_TO_NM3 * 18.817,
1078 : KCAL_TO_KJ * -20.000,
1079 : KCAL_TO_KJ * -20.000,
1080 : KCAL_TO_KJ * -25.000,
1081 : KCAL_TO_KJ * -18.0,
1082 : 1. / (ANG_TO_NM * 6.0),
1083 : 0.185,
1084 10 : };
1085 5 : valuemap["NC2"] = {
1086 : ANG3_TO_NM3 * 18.215,
1087 : KCAL_TO_KJ * -10.000,
1088 : KCAL_TO_KJ * -10.000,
1089 : KCAL_TO_KJ * -12.000,
1090 : KCAL_TO_KJ * -7.0,
1091 : 1. / (ANG_TO_NM * 6.0),
1092 : 0.185,
1093 10 : };
1094 5 : valuemap["NY"] = {
1095 : ANG3_TO_NM3 * 12.001,
1096 : KCAL_TO_KJ * -5.950,
1097 : KCAL_TO_KJ * -5.950,
1098 : KCAL_TO_KJ * -9.059,
1099 : KCAL_TO_KJ * -8.8,
1100 : 1. / (ANG_TO_NM * 3.5),
1101 : 0.185,
1102 10 : };
1103 5 : valuemap["NP"] = {
1104 : ANG3_TO_NM3 * 4.993,
1105 : KCAL_TO_KJ * -20.000,
1106 : KCAL_TO_KJ * -20.000,
1107 : KCAL_TO_KJ * -25.000,
1108 : KCAL_TO_KJ * -18.0,
1109 : 1. / (ANG_TO_NM * 6.0),
1110 : 0.185,
1111 10 : };
1112 5 : valuemap["O"] = {
1113 : ANG3_TO_NM3 * 11.772,
1114 : KCAL_TO_KJ * -5.330,
1115 : KCAL_TO_KJ * -5.330,
1116 : KCAL_TO_KJ * -5.787,
1117 : KCAL_TO_KJ * -8.8,
1118 : 1. / (ANG_TO_NM * 3.5),
1119 : 0.170,
1120 10 : };
1121 5 : valuemap["OB"] = {
1122 : ANG3_TO_NM3 * 11.694,
1123 : KCAL_TO_KJ * -5.330,
1124 : KCAL_TO_KJ * -5.330,
1125 : KCAL_TO_KJ * -5.787,
1126 : KCAL_TO_KJ * -8.8,
1127 : 1. / (ANG_TO_NM * 3.5),
1128 : 0.170,
1129 10 : };
1130 5 : valuemap["OC"] = {
1131 : ANG3_TO_NM3 * 12.003,
1132 : KCAL_TO_KJ * -10.000,
1133 : KCAL_TO_KJ * -10.000,
1134 : KCAL_TO_KJ * -12.000,
1135 : KCAL_TO_KJ * -9.4,
1136 : 1. / (ANG_TO_NM * 6.0),
1137 : 0.170,
1138 10 : };
1139 5 : valuemap["OH1"] = {
1140 : ANG3_TO_NM3 * 15.528,
1141 : KCAL_TO_KJ * -5.920,
1142 : KCAL_TO_KJ * -5.920,
1143 : KCAL_TO_KJ * -9.264,
1144 : KCAL_TO_KJ * -11.2,
1145 : 1. / (ANG_TO_NM * 3.5),
1146 : 0.177,
1147 10 : };
1148 5 : valuemap["OS"] = {
1149 : ANG3_TO_NM3 * 6.774,
1150 : KCAL_TO_KJ * -2.900,
1151 : KCAL_TO_KJ * -2.900,
1152 : KCAL_TO_KJ * -3.150,
1153 : KCAL_TO_KJ * -4.8,
1154 : 1. / (ANG_TO_NM * 3.5),
1155 : 0.177,
1156 10 : };
1157 5 : valuemap["S"] = {
1158 : ANG3_TO_NM3 * 20.703,
1159 : KCAL_TO_KJ * -3.240,
1160 : KCAL_TO_KJ * -3.240,
1161 : KCAL_TO_KJ * -4.475,
1162 : KCAL_TO_KJ * -39.9,
1163 : 1. / (ANG_TO_NM * 3.5),
1164 : 0.20,
1165 10 : };
1166 5 : valuemap["SM"] = {
1167 : ANG3_TO_NM3 * 21.306,
1168 : KCAL_TO_KJ * -3.240,
1169 : KCAL_TO_KJ * -3.240,
1170 : KCAL_TO_KJ * -4.475,
1171 : KCAL_TO_KJ * -39.9,
1172 : 1. / (ANG_TO_NM * 3.5),
1173 : 0.197,
1174 10 : };
1175 5 : return valuemap;
1176 : }
1177 : }
1178 : }
|