LCOV - code coverage report
Current view: top level - bias - MetaD.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 949 1076 88.2 %
Date: 2024-10-18 13:59:31 Functions: 26 28 92.9 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2011-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "Bias.h"
      23             : #include "core/ActionRegister.h"
      24             : #include "core/ActionSet.h"
      25             : #include "core/PlumedMain.h"
      26             : #include "core/FlexibleBin.h"
      27             : #include "tools/Exception.h"
      28             : #include "tools/Grid.h"
      29             : #include "tools/Matrix.h"
      30             : #include "tools/OpenMP.h"
      31             : #include "tools/Random.h"
      32             : #include "tools/File.h"
      33             : #include "tools/Communicator.h"
      34             : #include <ctime>
      35             : #include <numeric>
      36             : 
      37             : namespace PLMD {
      38             : namespace bias {
      39             : 
      40             : //+PLUMEDOC BIAS METAD
      41             : /*
      42             : Used to performed metadynamics on one or more collective variables.
      43             : 
      44             : In a metadynamics simulations a history dependent bias composed of
      45             : intermittently added Gaussian functions is added to the potential \cite metad.
      46             : 
      47             : \f[
      48             : V(\vec{s},t) = \sum_{ k \tau < t} W(k \tau)
      49             : \exp\left(
      50             : -\sum_{i=1}^{d} \frac{(s_i-s_i^{(0)}(k \tau))^2}{2\sigma_i^2}
      51             : \right).
      52             : \f]
      53             : 
      54             : This potential forces the system away from the kinetic traps in the potential energy surface
      55             : and out into the unexplored parts of the energy landscape. Information on the Gaussian
      56             : functions from which this potential is composed is output to a file called HILLS, which
      57             : is used both the restart the calculation and to reconstruct the free energy as a function of the CVs.
      58             : The free energy can be reconstructed from a metadynamics calculation because the final bias is given
      59             : by:
      60             : 
      61             : \f[
      62             : V(\vec{s}) = -F(\vec{s})
      63             : \f]
      64             : 
      65             : During post processing the free energy can be calculated in this way using the \ref sum_hills
      66             : utility.
      67             : 
      68             : In the simplest possible implementation of a metadynamics calculation the expense of a metadynamics
      69             : calculation increases with the length of the simulation as one has to, at every step, evaluate
      70             : the values of a larger and larger number of Gaussian kernels. To avoid this issue you can
      71             : store the bias on a grid.  This approach is similar to that proposed in \cite babi08jcp but has the
      72             : advantage that the grid spacing is independent on the Gaussian width.
      73             : Notice that you should provide the grid boundaries (GRID_MIN and GRID_MAX) and either the number of bins
      74             : for every collective variable (GRID_BIN) or the desired grid spacing (GRID_SPACING).
      75             : In case you provide both PLUMED will use the most conservative choice (highest number of bins) for each dimension.
      76             : In case you do not provide any information about bin size (neither GRID_BIN nor GRID_SPACING)
      77             : PLUMED will use 1/5 of the Gaussian width (SIGMA) as grid spacing if the width is fixed or 1/5 of the minimum
      78             : Gaussian width (SIGMA_MIN) if the width is variable. This default choice should be reasonable for most applications.
      79             : 
      80             : Alternatively to the use of grids, it is possible to use a neighbor list to decrease the cost of evaluating the bias,
      81             : this can be enabled using NLIST. NLIST can be beneficial with more than 2 collective variables, where GRID becomes
      82             : expensive and memory consuming. The neighbor list will be updated everytime the CVs go farther than a cut-off value
      83             : from the position they were at last neighbor list update. Gaussians are added to the neigbhor list if their center
      84             : is within 6.*DP2CUTOFF*sigma*sigma. While the list is updated if the CVs are farther from the center than 0.5 of the
      85             : standard deviation of the Gaussian center distribution of the list. These parameters (6 and 0.5) can be modified using
      86             : NLIST_PARAMETERS. Note that the use of neighbor list does not provide the exact bias.
      87             : 
      88             : Metadynamics can be restarted either from a HILLS file as well as from a GRID, in this second
      89             : case one can first save a GRID using GRID_WFILE (and GRID_WSTRIDE) and at a later stage read
      90             : it using GRID_RFILE.
      91             : 
      92             : The work performed by the METAD bias can be calculated using CALC_WORK, note that this is expensive when not using grids.
      93             : 
      94             : Another option that is available in plumed is well-tempered metadynamics \cite Barducci:2008. In this
      95             : variant of metadynamics the heights of the Gaussian hills are scaled at each step so the bias is now
      96             : given by:
      97             : 
      98             : \f[
      99             : V({s},t)= \sum_{t'=0,\tau_G,2\tau_G,\dots}^{t'<t} W e^{-V({s}({q}(t'),t')/\Delta T} \exp\left(
     100             : -\sum_{i=1}^{d} \frac{(s_i({q})-s_i({q}(t'))^2}{2\sigma_i^2}
     101             : \right),
     102             : \f]
     103             : 
     104             : This method ensures that the bias converges more smoothly. It should be noted that, in the case of well-tempered metadynamics, in
     105             : the output printed the Gaussian height is re-scaled using the bias factor.
     106             : Also notice that with well-tempered metadynamics the HILLS file does not contain the bias,
     107             : but the negative of the free-energy estimate. This choice has the advantage that
     108             : one can restart a simulation using a different value for the \f$\Delta T\f$. The applied bias will be scaled accordingly.
     109             : 
     110             : Note that you can use here also the flexible Gaussian approach  \cite Branduardi:2012dl
     111             : in which you can adapt the Gaussian to the extent of Cartesian space covered by a variable or
     112             : to the space in collective variable covered in a given time. In this case the width of the deposited
     113             : Gaussian potential is denoted by one value only that is a Cartesian space (ADAPTIVE=GEOM) or a time
     114             : (ADAPTIVE=DIFF). Note that a specific integration technique for the deposited Gaussian kernels
     115             : should be used in this case. Check the documentation for utility sum_hills.
     116             : 
     117             : With the keyword INTERVAL one changes the metadynamics algorithm setting the bias force equal to zero
     118             : outside boundary \cite baftizadeh2012protein. If, for example, metadynamics is performed on a CV s and one is interested only
     119             : to the free energy for s > boundary, the history dependent potential is still updated according to the above
     120             : equations but the metadynamics force is set to zero for s < boundary. Notice that Gaussian kernels are added also
     121             : if s < boundary, as the tails of these Gaussian kernels influence VG in the relevant region s > boundary. In this way, the
     122             : force on the system in the region s > boundary comes from both metadynamics and the force field, in the region
     123             : s < boundary only from the latter. This approach allows obtaining a history-dependent bias potential VG that
     124             : fluctuates around a stable estimator, equal to the negative of the free energy far enough from the
     125             : boundaries. Note that:
     126             : - It works only for one-dimensional biases;
     127             : - It works both with and without GRID;
     128             : - The interval limit boundary in a region where the free energy derivative is not large;
     129             : - If in the region outside the limit boundary the system has a free energy minimum, the INTERVAL keyword should
     130             :   be used together with a \ref UPPER_WALLS or \ref LOWER_WALLS at boundary.
     131             : 
     132             : As a final note, since version 2.0.2 when the system is outside of the selected interval the force
     133             : is set to zero and the bias value to the value at the corresponding boundary. This allows acceptances
     134             : for replica exchange methods to be computed correctly.
     135             : 
     136             : Multiple walkers  \cite multiplewalkers can also be used. See below the examples.
     137             : 
     138             : 
     139             : The \f$c(t)\f$ reweighting factor can also be calculated on the fly using the equations
     140             : presented in \cite Tiwary_jp504920s.
     141             : The expression used to calculate \f$c(t)\f$ follows directly from Eq. 3 in \cite Tiwary_jp504920s,
     142             : where \f$F(\vec{s})=-\gamma/(\gamma-1) V(\vec{s})\f$.
     143             : This gives smoother results than equivalent Eqs. 13 and Eqs. 14 in that paper.
     144             : The \f$c(t)\f$ is given by the rct component while the bias
     145             : normalized by \f$c(t)\f$ is given by the rbias component (rbias=bias-rct) which can be used
     146             : to obtain a reweighted histogram.
     147             : The calculation of \f$c(t)\f$ is enabled by using the keyword CALC_RCT.
     148             : By default \f$c(t)\f$ is updated every time the bias changes, but if this slows down the simulation
     149             : the keyword RCT_USTRIDE can be set to a value higher than 1.
     150             : This option requires that a grid is used.
     151             : 
     152             : Additional material and examples can be also found in the tutorials:
     153             : 
     154             : - \ref lugano-3
     155             : 
     156             : Concurrent metadynamics
     157             : as done e.g. in Ref. \cite gil2015enhanced . This indeed can be obtained by using the METAD
     158             : action multiple times in the same input file.
     159             : 
     160             : \par Examples
     161             : 
     162             : The following input is for a standard metadynamics calculation using as
     163             : collective variables the distance between atoms 3 and 5
     164             : and the distance between atoms 2 and 4. The value of the CVs and
     165             : the metadynamics bias potential are written to the COLVAR file every 100 steps.
     166             : \plumedfile
     167             : DISTANCE ATOMS=3,5 LABEL=d1
     168             : DISTANCE ATOMS=2,4 LABEL=d2
     169             : METAD ARG=d1,d2 SIGMA=0.2,0.2 HEIGHT=0.3 PACE=500 LABEL=restraint
     170             : PRINT ARG=d1,d2,restraint.bias STRIDE=100  FILE=COLVAR
     171             : \endplumedfile
     172             : (See also \ref DISTANCE \ref PRINT).
     173             : 
     174             : \par
     175             : If you use adaptive Gaussian kernels, with diffusion scheme where you use
     176             : a Gaussian that should cover the space of 20 time steps in collective variables.
     177             : Note that in this case the histogram correction is needed when summing up hills.
     178             : \plumedfile
     179             : DISTANCE ATOMS=3,5 LABEL=d1
     180             : DISTANCE ATOMS=2,4 LABEL=d2
     181             : METAD ARG=d1,d2 SIGMA=20 HEIGHT=0.3 PACE=500 LABEL=restraint ADAPTIVE=DIFF
     182             : PRINT ARG=d1,d2,restraint.bias STRIDE=100  FILE=COLVAR
     183             : \endplumedfile
     184             : 
     185             : \par
     186             : If you use adaptive Gaussian kernels, with geometrical scheme where you use
     187             : a Gaussian that should cover the space of 0.05 nm in Cartesian space.
     188             : Note that in this case the histogram correction is needed when summing up hills.
     189             : \plumedfile
     190             : DISTANCE ATOMS=3,5 LABEL=d1
     191             : DISTANCE ATOMS=2,4 LABEL=d2
     192             : METAD ARG=d1,d2 SIGMA=0.05 HEIGHT=0.3 PACE=500 LABEL=restraint ADAPTIVE=GEOM
     193             : PRINT ARG=d1,d2,restraint.bias STRIDE=100  FILE=COLVAR
     194             : \endplumedfile
     195             : 
     196             : \par
     197             : When using adaptive Gaussian kernels you might want to limit how the hills width can change.
     198             : You can use SIGMA_MIN and SIGMA_MAX keywords.
     199             : The sigmas should specified in terms of CV so you should use the CV units.
     200             : Note that if you use a negative number, this means that the limit is not set.
     201             : Note also that in this case the histogram correction is needed when summing up hills.
     202             : \plumedfile
     203             : DISTANCE ATOMS=3,5 LABEL=d1
     204             : DISTANCE ATOMS=2,4 LABEL=d2
     205             : METAD ...
     206             :   ARG=d1,d2 SIGMA=0.05 HEIGHT=0.3 PACE=500 LABEL=restraint ADAPTIVE=GEOM
     207             :   SIGMA_MIN=0.2,0.1 SIGMA_MAX=0.5,1.0
     208             : ... METAD
     209             : PRINT ARG=d1,d2,restraint.bias STRIDE=100  FILE=COLVAR
     210             : \endplumedfile
     211             : 
     212             : \par
     213             : Multiple walkers can be also use as in  \cite multiplewalkers
     214             : These are enabled by setting the number of walker used, the id of the
     215             : current walker which interprets the input file, the directory where the
     216             : hills containing files resides, and the frequency to read the other walkers.
     217             : Here is an example
     218             : \plumedfile
     219             : DISTANCE ATOMS=3,5 LABEL=d1
     220             : METAD ...
     221             :    ARG=d1 SIGMA=0.05 HEIGHT=0.3 PACE=500 LABEL=restraint
     222             :    WALKERS_N=10
     223             :    WALKERS_ID=3
     224             :    WALKERS_DIR=../
     225             :    WALKERS_RSTRIDE=100
     226             : ... METAD
     227             : \endplumedfile
     228             : where  WALKERS_N is the total number of walkers, WALKERS_ID is the
     229             : id of the present walker (starting from 0 ) and the WALKERS_DIR is the directory
     230             : where all the walkers are located. WALKERS_RSTRIDE is the number of step between
     231             : one update and the other. Since version 2.2.5, hills files are automatically
     232             : flushed every WALKERS_RSTRIDE steps.
     233             : 
     234             : \par
     235             : The \f$c(t)\f$ reweighting factor can be calculated on the fly using the equations
     236             : presented in \cite Tiwary_jp504920s as described above.
     237             : This is enabled by using the keyword CALC_RCT,
     238             : and can be done only if the bias is defined on a grid.
     239             : \plumedfile
     240             : phi: TORSION ATOMS=1,2,3,4
     241             : psi: TORSION ATOMS=5,6,7,8
     242             : 
     243             : METAD ...
     244             :  LABEL=metad
     245             :  ARG=phi,psi SIGMA=0.20,0.20 HEIGHT=1.20 BIASFACTOR=5 TEMP=300.0 PACE=500
     246             :  GRID_MIN=-pi,-pi GRID_MAX=pi,pi GRID_BIN=150,150
     247             :  CALC_RCT
     248             :  RCT_USTRIDE=10
     249             : ... METAD
     250             : \endplumedfile
     251             : Here we have asked that the calculation is performed every 10 hills deposition by using
     252             : RCT_USTRIDE keyword. If this keyword is not given, the calculation will
     253             : by default be performed every time the bias changes. The \f$c(t)\f$ reweighting factor will be given
     254             : in the rct component while the instantaneous value of the bias potential
     255             : normalized using the \f$c(t)\f$ reweighting factor is given in the rbias component
     256             : [rbias=bias-rct] which can be used to obtain a reweighted histogram or
     257             : free energy surface using the \ref HISTOGRAM analysis.
     258             : 
     259             : \par
     260             : The kinetics of the transitions between basins can also be analyzed on the fly as
     261             : in \cite PRL230602. The flag ACCELERATION turn on accumulation of the acceleration
     262             : factor that can then be used to determine the rate. This method can be used together
     263             : with \ref COMMITTOR analysis to stop the simulation when the system get to the target basin.
     264             : It must be used together with Well-Tempered Metadynamics. If restarting from a previous
     265             : metadynamics you need to use the ACCELERATION_RFILE keyword to give the name of the
     266             : data file from which the previous value of the acceleration factor should be read, otherwise the
     267             : calculation of the acceleration factor will be wrong.
     268             : 
     269             : \par
     270             : By using the flag FREQUENCY_ADAPTIVE the frequency adaptive scheme introduced in \cite Wang-JCP-2018
     271             : is turned on. The frequency for hill addition then changes dynamically based on the acceleration factor
     272             : according to the following equation
     273             : \f[
     274             : \tau_{\mathrm{dep}}(t) =
     275             : \min\left[
     276             : \tau_0 \cdot
     277             : \max\left[\frac{\alpha(t)}{\theta},1\right]
     278             : ,\tau_{c}
     279             : \right]
     280             : \f]
     281             : where \f$\tau_0\f$ is the initial hill addition frequency given by the PACE keyword,
     282             : \f$\tau_{c}\f$ is the maximum allowed frequency given by the FA_MAX_PACE keyword,
     283             : \f$\alpha(t)\f$ is the instantaneous acceleration factor at time \f$t\f$,
     284             : and \f$\theta\f$ is a threshold value that acceleration factor has to reach before
     285             : triggering a change in the hill addition frequency given by the FA_MIN_ACCELERATION keyword.
     286             : The frequency for updating the hill addition frequency according to this equation is
     287             : given by the FA_UPDATE_FREQUENCY keyword, by default it is the same as the value given
     288             : in PACE. The hill hill addition frequency increase monotonously such that if the
     289             : instantaneous acceleration factor is lower than in the previous updating step the
     290             : previous \f$\tau_{\mathrm{dep}}\f$ is kept rather than updating it to a lower value.
     291             : The instantaneous hill addition frequency \f$\tau_{\mathrm{dep}}(t)\f$ is outputted
     292             : to pace component. Note that if restarting from a previous metadynamics run you need to
     293             : use the ACCELERATION_RFILE keyword to read in the acceleration factors from the
     294             : previous run, otherwise the hill addition frequency will start from the initial
     295             : frequency.
     296             : 
     297             : 
     298             : \par
     299             : You can also provide a target distribution using the keyword TARGET
     300             : \cite white2015designing
     301             : \cite marinelli2015ensemble
     302             : \cite gil2016empirical
     303             : The TARGET should be a grid containing a free-energy (i.e. the -\f$k_B\f$T*log of the desired target distribution).
     304             : Gaussian kernels will then be scaled by a factor
     305             : \f[
     306             : e^{\beta(\tilde{F}(s)-\tilde{F}_{max})}
     307             : \f]
     308             : Here \f$\tilde{F}(s)\f$ is the free energy defined on the grid and \f$\tilde{F}_{max}\f$ its maximum value.
     309             : Notice that we here used the maximum value as in ref \cite gil2016empirical
     310             : This choice allows to avoid exceedingly large Gaussian kernels to be added. However,
     311             : it could make the Gaussian too small. You should always choose carefully the HEIGHT parameter
     312             : in this case.
     313             : The grid file should be similar to other PLUMED grid files in that it should contain
     314             : both the target free-energy and its derivatives.
     315             : 
     316             : Notice that if you wish your simulation to converge to the target free energy you should use
     317             : the DAMPFACTOR command to provide a global tempering \cite dama2014well
     318             : Alternatively, if you use a BIASFACTOR your simulation will converge to a free
     319             : energy that is a linear combination of the target free energy and of the intrinsic free energy
     320             : determined by the original force field.
     321             : 
     322             : \plumedfile
     323             : DISTANCE ATOMS=3,5 LABEL=d1
     324             : METAD ...
     325             :  LABEL=t1
     326             :  ARG=d1 SIGMA=0.05 TAU=200 DAMPFACTOR=100 PACE=250
     327             :  GRID_MIN=1.14 GRID_MAX=1.32 GRID_BIN=6
     328             :  TARGET=dist.grid
     329             : ... METAD
     330             : 
     331             : PRINT ARG=d1,t1.bias STRIDE=100 FILE=COLVAR
     332             : \endplumedfile
     333             : 
     334             : The file dist.dat for this calculation would read:
     335             : 
     336             : \auxfile{dist.grid}
     337             : #! FIELDS d1 t1.target der_d1
     338             : #! SET min_d1 1.14
     339             : #! SET max_d1 1.32
     340             : #! SET nbins_d1  6
     341             : #! SET periodic_d1 false
     342             :    1.1400   0.0031   0.1101
     343             :    1.1700   0.0086   0.2842
     344             :    1.2000   0.0222   0.6648
     345             :    1.2300   0.0521   1.4068
     346             :    1.2600   0.1120   2.6873
     347             :    1.2900   0.2199   4.6183
     348             :    1.3200   0.3948   7.1055
     349             : \endauxfile
     350             : 
     351             : Notice that BIASFACTOR can also be chosen as equal to 1. In this case one will perform
     352             : unbiased sampling. Instead of using HEIGHT, one should provide the TAU parameter.
     353             : \plumedfile
     354             : d: DISTANCE ATOMS=3,5
     355             : METAD ARG=d SIGMA=0.1 TAU=4.0 TEMP=300 PACE=100 BIASFACTOR=1.0
     356             : \endplumedfile
     357             : The HILLS file obtained will still work with `plumed sum_hills` so as to plot a free-energy.
     358             : The case where this makes sense is probably that of RECT simulations.
     359             : 
     360             : Regarding RECT simulations, you can also use the RECT keyword so as to avoid using multiple input files.
     361             : For instance, a single input file will be
     362             : \plumedfile
     363             : d: DISTANCE ATOMS=3,5
     364             : METAD ARG=d SIGMA=0.1 TAU=4.0 TEMP=300 PACE=100 RECT=1.0,1.5,2.0,3.0
     365             : \endplumedfile
     366             : The number of elements in the RECT array should be equal to the number of replicas.
     367             : 
     368             : */
     369             : //+ENDPLUMEDOC
     370             : 
     371             : class MetaD : public Bias {
     372             : 
     373             : private:
     374             :   struct Gaussian {
     375             :     bool   multivariate; // this is required to discriminate the one dimensional case
     376             :     double height;
     377             :     std::vector<double> center;
     378             :     std::vector<double> sigma;
     379             :     std::vector<double> invsigma;
     380        5231 :     Gaussian(const bool m, const double h, const std::vector<double>& c, const std::vector<double>& s):
     381        5231 :       multivariate(m),height(h),center(c),sigma(s),invsigma(s) {
     382             :       // to avoid troubles from zero element in flexible hills
     383       15230 :       for(unsigned i=0; i<invsigma.size(); ++i) {
     384        9999 :         if(std::abs(invsigma[i])>1.e-20) invsigma[i]=1.0/invsigma[i] ;
     385           0 :         else invsigma[i]=0.0;
     386             :       }
     387        5231 :     }
     388             :   };
     389           8 :   struct TemperingSpecs {
     390             :     bool is_active;
     391             :     std::string name_stem;
     392             :     std::string name;
     393             :     double biasf;
     394             :     double threshold;
     395             :     double alpha;
     396         156 :     inline TemperingSpecs(bool is_active, const std::string &name_stem, const std::string &name, double biasf, double threshold, double alpha) :
     397         156 :       is_active(is_active), name_stem(name_stem), name(name), biasf(biasf), threshold(threshold), alpha(alpha)
     398         156 :     {}
     399             :   };
     400             :   // general setup
     401             :   double kbt_;
     402             :   int stride_;
     403             :   bool calc_work_;
     404             :   // well-tempered MetaD
     405             :   bool welltemp_;
     406             :   double biasf_;
     407             :   // output files format
     408             :   std::string fmt_;
     409             :   // first step?
     410             :   bool isFirstStep_;
     411             :   // Gaussian starting parameters
     412             :   double height0_;
     413             :   std::vector<double> sigma0_;
     414             :   std::vector<double> sigma0min_;
     415             :   std::vector<double> sigma0max_;
     416             :   // Gaussians
     417             :   std::vector<Gaussian> hills_;
     418             :   std::unique_ptr<FlexibleBin> flexbin_;
     419             :   int adaptive_;
     420             :   OFile hillsOfile_;
     421             :   std::vector<std::unique_ptr<IFile>> ifiles_;
     422             :   std::vector<std::string> ifilesnames_;
     423             :   // Grids
     424             :   bool grid_;
     425             :   std::unique_ptr<GridBase> BiasGrid_;
     426             :   OFile gridfile_;
     427             :   bool storeOldGrids_;
     428             :   int wgridstride_;
     429             :   // multiple walkers
     430             :   int mw_n_;
     431             :   std::string mw_dir_;
     432             :   int mw_id_;
     433             :   int mw_rstride_;
     434             :   bool walkers_mpi_;
     435             :   unsigned mpi_nw_;
     436             :   // flying gaussians
     437             :   bool flying_;
     438             :   // kinetics from metadynamics
     439             :   bool acceleration_;
     440             :   double acc_;
     441             :   double acc_restart_mean_;
     442             :   // transition-tempering metadynamics
     443             :   bool calc_max_bias_;
     444             :   double max_bias_;
     445             :   bool calc_transition_bias_;
     446             :   double transition_bias_;
     447             :   std::vector<std::vector<double> > transitionwells_;
     448             :   static const size_t n_tempering_options_ = 1;
     449             :   static const std::string tempering_names_[1][2];
     450             :   double dampfactor_;
     451             :   struct TemperingSpecs tt_specs_;
     452             :   std::string targetfilename_;
     453             :   std::unique_ptr<GridBase> TargetGrid_;
     454             :   // frequency adaptive metadynamics
     455             :   int current_stride_;
     456             :   bool freq_adaptive_;
     457             :   int fa_update_frequency_;
     458             :   int fa_max_stride_;
     459             :   double fa_min_acceleration_;
     460             :   // intervals
     461             :   double uppI_;
     462             :   double lowI_;
     463             :   bool doInt_;
     464             :   // reweighting
     465             :   bool calc_rct_;
     466             :   double reweight_factor_;
     467             :   unsigned rct_ustride_;
     468             :   // work
     469             :   double work_;
     470             :   // neighbour list stuff
     471             :   bool nlist_;
     472             :   bool nlist_update_;
     473             :   unsigned nlist_steps_;
     474             :   std::array<double,2> nlist_param_;
     475             :   std::vector<Gaussian> nlist_hills_;
     476             :   std::vector<double> nlist_center_;
     477             :   std::vector<double> nlist_dev2_;
     478             : 
     479             :   double stretchA=1.0;
     480             :   double stretchB=0.0;
     481             : 
     482             :   bool noStretchWarningDone=false;
     483             : 
     484          12 :   void noStretchWarning() {
     485          12 :     if(!noStretchWarningDone) {
     486           3 :       log<<"\nWARNING: you are using a HILLS file with Gaussian kernels, PLUMED 2.8 uses stretched Gaussians by default\n";
     487             :     }
     488          12 :     noStretchWarningDone=true;
     489          12 :   }
     490             : 
     491             :   static void registerTemperingKeywords(const std::string &name_stem, const std::string &name, Keywords &keys);
     492             :   void   readTemperingSpecs(TemperingSpecs &t_specs);
     493             :   void   logTemperingSpecs(const TemperingSpecs &t_specs);
     494             :   void   readGaussians(IFile*);
     495             :   void   writeGaussian(const Gaussian&,OFile&);
     496             :   void   addGaussian(const Gaussian&);
     497             :   double getHeight(const std::vector<double>&);
     498             :   void   temperHeight(double &height, const TemperingSpecs &t_specs, const double tempering_bias);
     499             :   double getBias(const std::vector<double>&);
     500             :   double getBiasAndDerivatives(const std::vector<double>&, std::vector<double>&);
     501             :   double evaluateGaussian(const std::vector<double>&, const Gaussian&);
     502             :   double evaluateGaussianAndDerivatives(const std::vector<double>&, const Gaussian&,std::vector<double>&,std::vector<double>&);
     503             :   double getGaussianNormalization(const Gaussian&);
     504             :   std::vector<unsigned> getGaussianSupport(const Gaussian&);
     505             :   bool   scanOneHill(IFile* ifile, std::vector<Value>& v, std::vector<double>& center, std::vector<double>& sigma, double& height, bool& multivariate);
     506             :   void   computeReweightingFactor();
     507             :   double getTransitionBarrierBias();
     508             :   void   updateFrequencyAdaptiveStride();
     509             :   void   updateNlist();
     510             : 
     511             : public:
     512             :   explicit MetaD(const ActionOptions&);
     513             :   void calculate() override;
     514             :   void update() override;
     515             :   static void registerKeywords(Keywords& keys);
     516             :   bool checkNeedsGradients()const override;
     517             : };
     518             : 
     519             : PLUMED_REGISTER_ACTION(MetaD,"METAD")
     520             : 
     521         159 : void MetaD::registerKeywords(Keywords& keys) {
     522         159 :   Bias::registerKeywords(keys);
     523         318 :   keys.addOutputComponent("rbias","CALC_RCT","scalar","the instantaneous value of the bias normalized using the c(t) reweighting factor [rbias=bias-rct]."
     524             :                           "This component can be used to obtain a reweighted histogram.");
     525         318 :   keys.addOutputComponent("rct","CALC_RCT","scalar","the reweighting factor c(t).");
     526         318 :   keys.addOutputComponent("work","CALC_WORK","scalar","accumulator for work");
     527         318 :   keys.addOutputComponent("acc","ACCELERATION","scalar","the metadynamics acceleration factor");
     528         318 :   keys.addOutputComponent("maxbias", "CALC_MAX_BIAS", "scalar","the maximum of the metadynamics V(s, t)");
     529         318 :   keys.addOutputComponent("transbias", "CALC_TRANSITION_BIAS", "scalar","the metadynamics transition bias V*(t)");
     530         318 :   keys.addOutputComponent("pace","FREQUENCY_ADAPTIVE","scalar","the hill addition frequency when employing frequency adaptive metadynamics");
     531         318 :   keys.addOutputComponent("nlker","NLIST","scalar","number of hills in the neighbor list");
     532         318 :   keys.addOutputComponent("nlsteps","NLIST","scalar","number of steps from last neighbor list update");
     533         318 :   keys.add("compulsory","SIGMA","the widths of the Gaussian hills");
     534         318 :   keys.add("compulsory","PACE","the frequency for hill addition");
     535         318 :   keys.add("compulsory","FILE","HILLS","a file in which the list of added hills is stored");
     536         318 :   keys.add("optional","HEIGHT","the heights of the Gaussian hills. Compulsory unless TAU and either BIASFACTOR or DAMPFACTOR are given");
     537         318 :   keys.add("optional","FMT","specify format for HILLS files (useful for decrease the number of digits in regtests)");
     538         318 :   keys.add("optional","BIASFACTOR","use well tempered metadynamics and use this bias factor.  Please note you must also specify temp");
     539         318 :   keys.addFlag("CALC_WORK",false,"calculate the total accumulated work done by the bias since last restart");
     540         318 :   keys.add("optional","RECT","list of bias factors for all the replicas");
     541         318 :   keys.add("optional","DAMPFACTOR","damp hills with exp(-max(V)/(kT*DAMPFACTOR)");
     542         318 :   for (size_t i = 0; i < n_tempering_options_; i++) {
     543         159 :     registerTemperingKeywords(tempering_names_[i][0], tempering_names_[i][1], keys);
     544             :   }
     545         318 :   keys.add("optional","TARGET","target to a predefined distribution");
     546         318 :   keys.add("optional","TEMP","the system temperature - this is only needed if you are doing well-tempered metadynamics");
     547         318 :   keys.add("optional","TAU","in well tempered metadynamics, sets height to (k_B Delta T*pace*timestep)/tau");
     548         318 :   keys.addFlag("CALC_RCT",false,"calculate the c(t) reweighting factor and use that to obtain the normalized bias [rbias=bias-rct]."
     549             :                "This method is not compatible with metadynamics not on a grid.");
     550         318 :   keys.add("optional","RCT_USTRIDE","the update stride for calculating the c(t) reweighting factor."
     551             :            "The default 1, so c(t) is updated every time the bias is updated.");
     552         318 :   keys.add("optional","GRID_MIN","the lower bounds for the grid");
     553         318 :   keys.add("optional","GRID_MAX","the upper bounds for the grid");
     554         318 :   keys.add("optional","GRID_BIN","the number of bins for the grid");
     555         318 :   keys.add("optional","GRID_SPACING","the approximate grid spacing (to be used as an alternative or together with GRID_BIN)");
     556         318 :   keys.addFlag("GRID_SPARSE",false,"use a sparse grid to store hills");
     557         318 :   keys.addFlag("GRID_NOSPLINE",false,"don't use spline interpolation with grids");
     558         318 :   keys.add("optional","GRID_WSTRIDE","write the grid to a file every N steps");
     559         318 :   keys.add("optional","GRID_WFILE","the file on which to write the grid");
     560         318 :   keys.add("optional","GRID_RFILE","a grid file from which the bias should be read at the initial step of the simulation");
     561         318 :   keys.addFlag("STORE_GRIDS",false,"store all the grid files the calculation generates. They will be deleted if this keyword is not present");
     562         318 :   keys.addFlag("NLIST",false,"Use neighbor list for kernels summation, faster but experimental");
     563         318 :   keys.add("optional", "NLIST_PARAMETERS","(default=6.,0.5) the two cutoff parameters for the Gaussians neighbor list");
     564         318 :   keys.add("optional","ADAPTIVE","use a geometric (=GEOM) or diffusion (=DIFF) based hills width scheme. Sigma is one number that has distance units or time step dimensions");
     565         318 :   keys.add("optional","SIGMA_MAX","the upper bounds for the sigmas (in CV units) when using adaptive hills. Negative number means no bounds ");
     566         318 :   keys.add("optional","SIGMA_MIN","the lower bounds for the sigmas (in CV units) when using adaptive hills. Negative number means no bounds ");
     567         318 :   keys.add("optional","WALKERS_ID", "walker id");
     568         318 :   keys.add("optional","WALKERS_N", "number of walkers");
     569         318 :   keys.add("optional","WALKERS_DIR", "shared directory with the hills files from all the walkers");
     570         318 :   keys.add("optional","WALKERS_RSTRIDE","stride for reading hills files");
     571         318 :   keys.addFlag("WALKERS_MPI",false,"Switch on MPI version of multiple walkers - not compatible with WALKERS_* options other than WALKERS_DIR");
     572         318 :   keys.add("optional","INTERVAL","one dimensional lower and upper limits, outside the limits the system will not feel the biasing force.");
     573         318 :   keys.addFlag("FLYING_GAUSSIAN",false,"Switch on flying Gaussian method, must be used with WALKERS_MPI");
     574         318 :   keys.addFlag("ACCELERATION",false,"Set to TRUE if you want to compute the metadynamics acceleration factor.");
     575         318 :   keys.add("optional","ACCELERATION_RFILE","a data file from which the acceleration should be read at the initial step of the simulation");
     576         318 :   keys.addFlag("CALC_MAX_BIAS", false, "Set to TRUE if you want to compute the maximum of the metadynamics V(s, t)");
     577         318 :   keys.addFlag("CALC_TRANSITION_BIAS", false, "Set to TRUE if you want to compute a metadynamics transition bias V*(t)");
     578         318 :   keys.add("numbered", "TRANSITIONWELL", "This keyword appears multiple times as TRANSITIONWELL followed by an integer. Each specifies the coordinates for one well as in transition-tempered metadynamics. At least one must be provided.");
     579         318 :   keys.addFlag("FREQUENCY_ADAPTIVE",false,"Set to TRUE if you want to enable frequency adaptive metadynamics such that the frequency for hill addition to change dynamically based on the acceleration factor.");
     580         318 :   keys.add("optional","FA_UPDATE_FREQUENCY","the frequency for updating the hill addition pace in frequency adaptive metadynamics, by default this is equal to the value given in PACE");
     581         318 :   keys.add("optional","FA_MAX_PACE","the maximum hill addition frequency allowed in frequency adaptive metadynamics. By default there is no maximum value.");
     582         318 :   keys.add("optional","FA_MIN_ACCELERATION","only update the hill addition pace in frequency adaptive metadynamics after reaching the minimum acceleration factor given here. By default it is 1.0.");
     583         159 :   keys.use("RESTART");
     584         159 :   keys.use("UPDATE_FROM");
     585         159 :   keys.use("UPDATE_UNTIL");
     586         159 : }
     587             : 
     588             : const std::string MetaD::tempering_names_[1][2] = {{"TT", "transition tempered"}};
     589             : 
     590         159 : void MetaD::registerTemperingKeywords(const std::string &name_stem, const std::string &name, Keywords &keys) {
     591         318 :   keys.add("optional", name_stem + "BIASFACTOR", "use " + name + " metadynamics with this bias factor.  Please note you must also specify temp");
     592         318 :   keys.add("optional", name_stem + "BIASTHRESHOLD", "use " + name + " metadynamics with this bias threshold.  Please note you must also specify " + name_stem + "BIASFACTOR");
     593         318 :   keys.add("optional", name_stem + "ALPHA", "use " + name + " metadynamics with this hill size decay exponent parameter.  Please note you must also specify " + name_stem + "BIASFACTOR");
     594         159 : }
     595             : 
     596         157 : MetaD::MetaD(const ActionOptions& ao):
     597             :   PLUMED_BIAS_INIT(ao),
     598         156 :   kbt_(0.0),
     599         156 :   stride_(0),
     600         156 :   calc_work_(false),
     601         156 :   welltemp_(false),
     602         156 :   biasf_(-1.0),
     603         156 :   isFirstStep_(true),
     604         156 :   height0_(std::numeric_limits<double>::max()),
     605         156 :   adaptive_(FlexibleBin::none),
     606         156 :   grid_(false),
     607         156 :   wgridstride_(0),
     608         156 :   mw_n_(1), mw_dir_(""), mw_id_(0), mw_rstride_(1),
     609         156 :   walkers_mpi_(false), mpi_nw_(0),
     610         156 :   flying_(false),
     611         156 :   acceleration_(false), acc_(0.0), acc_restart_mean_(0.0),
     612         156 :   calc_max_bias_(false), max_bias_(0.0),
     613         156 :   calc_transition_bias_(false), transition_bias_(0.0),
     614         156 :   dampfactor_(0.0),
     615         312 :   tt_specs_(false, "TT", "Transition Tempered", -1.0, 0.0, 1.0),
     616         156 :   current_stride_(0),
     617         156 :   freq_adaptive_(false),
     618         156 :   fa_update_frequency_(0),
     619         156 :   fa_max_stride_(0),
     620         156 :   fa_min_acceleration_(1.0),
     621         156 :   uppI_(-1), lowI_(-1), doInt_(false),
     622         156 :   calc_rct_(false),
     623         156 :   reweight_factor_(0.0),
     624         156 :   rct_ustride_(1),
     625         156 :   work_(0),
     626         156 :   nlist_(false),
     627         156 :   nlist_update_(false),
     628         469 :   nlist_steps_(0)
     629             : {
     630         156 :   if(!dp2cutoffNoStretch()) {
     631         156 :     stretchA=dp2cutoffA;
     632         156 :     stretchB=dp2cutoffB;
     633             :   }
     634             :   // parse the flexible hills
     635             :   std::string adaptiveoption;
     636             :   adaptiveoption="NONE";
     637         312 :   parse("ADAPTIVE",adaptiveoption);
     638         156 :   if(adaptiveoption=="GEOM") {
     639          22 :     log.printf("  Uses Geometry-based hills width: sigma must be in distance units and only one sigma is needed\n");
     640          22 :     adaptive_=FlexibleBin::geometry;
     641         134 :   } else if(adaptiveoption=="DIFF") {
     642           3 :     log.printf("  Uses Diffusion-based hills width: sigma must be in time steps and only one sigma is needed\n");
     643           3 :     adaptive_=FlexibleBin::diffusion;
     644         131 :   } else if(adaptiveoption=="NONE") {
     645         130 :     adaptive_=FlexibleBin::none;
     646             :   } else {
     647           1 :     error("I do not know this type of adaptive scheme");
     648             :   }
     649             : 
     650         155 :   parse("FMT",fmt_);
     651             : 
     652             :   // parse the sigma
     653         155 :   parseVector("SIGMA",sigma0_);
     654         155 :   if(adaptive_==FlexibleBin::none) {
     655             :     // if you use normal sigma you need one sigma per argument
     656         130 :     if( sigma0_.size()!=getNumberOfArguments() ) error("number of arguments does not match number of SIGMA parameters");
     657             :   } else {
     658             :     // if you use flexible hills you need one sigma
     659          25 :     if(sigma0_.size()!=1) {
     660           1 :       error("If you choose ADAPTIVE you need only one sigma according to your choice of type (GEOM/DIFF)");
     661             :     }
     662             :     // if adaptive then the number must be an integer
     663          24 :     if(adaptive_==FlexibleBin::diffusion) {
     664           3 :       if(int(sigma0_[0])-sigma0_[0]>1.e-9 || int(sigma0_[0])-sigma0_[0] <-1.e-9 || int(sigma0_[0])<1 ) {
     665           0 :         error("In case of adaptive hills with diffusion, the sigma must be an integer which is the number of time steps\n");
     666             :       }
     667             :     }
     668             :     // here evtl parse the sigma min and max values
     669          48 :     parseVector("SIGMA_MIN",sigma0min_);
     670          24 :     if(sigma0min_.size()>0 && sigma0min_.size()!=getNumberOfArguments()) {
     671           1 :       error("the number of SIGMA_MIN values be the same of the number of the arguments");
     672          23 :     } else if(sigma0min_.size()==0) {
     673          23 :       sigma0min_.resize(getNumberOfArguments());
     674          67 :       for(unsigned i=0; i<getNumberOfArguments(); i++) {sigma0min_[i]=-1.;}
     675             :     }
     676             : 
     677          46 :     parseVector("SIGMA_MAX",sigma0max_);
     678          23 :     if(sigma0max_.size()>0 && sigma0max_.size()!=getNumberOfArguments()) {
     679           1 :       error("the number of SIGMA_MAX values be the same of the number of the arguments");
     680          22 :     } else if(sigma0max_.size()==0) {
     681          22 :       sigma0max_.resize(getNumberOfArguments());
     682          64 :       for(unsigned i=0; i<getNumberOfArguments(); i++) {sigma0max_[i]=-1.;}
     683             :     }
     684             : 
     685          44 :     flexbin_=Tools::make_unique<FlexibleBin>(adaptive_,this,sigma0_[0],sigma0min_,sigma0max_);
     686             :   }
     687             : 
     688             :   // note: HEIGHT is not compulsory, since one could use the TAU keyword, see below
     689         152 :   parse("HEIGHT",height0_);
     690         152 :   parse("PACE",stride_);
     691         151 :   if(stride_<=0) error("frequency for hill addition is nonsensical");
     692         151 :   current_stride_ = stride_;
     693         159 :   std::string hillsfname="HILLS";
     694         151 :   parse("FILE",hillsfname);
     695             : 
     696             :   // Manually set to calculate special bias quantities
     697             :   // throughout the course of simulation. (These are chosen due to
     698             :   // relevance for tempering and event-driven logic as well.)
     699         151 :   parseFlag("CALC_MAX_BIAS", calc_max_bias_);
     700         305 :   parseFlag("CALC_TRANSITION_BIAS", calc_transition_bias_);
     701             : 
     702             :   std::vector<double> rect_biasf_;
     703         302 :   parseVector("RECT",rect_biasf_);
     704         151 :   if(rect_biasf_.size()>0) {
     705          18 :     int r=0;
     706          18 :     if(comm.Get_rank()==0) r=multi_sim_comm.Get_rank();
     707          18 :     comm.Bcast(r,0);
     708          18 :     biasf_=rect_biasf_[r];
     709          18 :     log<<"  You are using RECT\n";
     710             :   } else {
     711         266 :     parse("BIASFACTOR",biasf_);
     712             :   }
     713         151 :   if( biasf_<1.0  && biasf_!=-1.0) error("well tempered bias factor is nonsensical");
     714         302 :   parse("DAMPFACTOR",dampfactor_); kbt_=getkBT();
     715         151 :   if(biasf_>=1.0) {
     716          38 :     if(kbt_==0.0) error("Unless the MD engine passes the temperature to plumed, with well-tempered metad you must specify it using TEMP");
     717          38 :     welltemp_=true;
     718             :   }
     719         151 :   if(dampfactor_>0.0) {
     720           2 :     if(kbt_==0.0) error("Unless the MD engine passes the temperature to plumed, with damped metad you must specify it using TEMP");
     721             :   }
     722             : 
     723         151 :   parseFlag("CALC_WORK",calc_work_);
     724             : 
     725             :   // Set transition tempering parameters.
     726             :   // Transition wells are read later via calc_transition_bias_.
     727         151 :   readTemperingSpecs(tt_specs_);
     728         151 :   if (tt_specs_.is_active) calc_transition_bias_ = true;
     729             : 
     730             :   // If any previous option specified to calculate a transition bias,
     731             :   // now read the transition wells for that quantity.
     732         151 :   if (calc_transition_bias_) {
     733          13 :     std::vector<double> tempcoords(getNumberOfArguments());
     734          26 :     for (unsigned i = 0; ; i++) {
     735          78 :       if (!parseNumberedVector("TRANSITIONWELL", i, tempcoords) ) break;
     736          26 :       if (tempcoords.size() != getNumberOfArguments()) {
     737           0 :         error("incorrect number of coordinates for transition tempering well");
     738             :       }
     739          26 :       transitionwells_.push_back(tempcoords);
     740             :     }
     741             :   }
     742             : 
     743         302 :   parse("TARGET",targetfilename_);
     744         151 :   if(targetfilename_.length()>0 && kbt_==0.0)  error("with TARGET temperature must be specified");
     745         151 :   double tau=0.0;
     746         151 :   parse("TAU",tau);
     747         151 :   if(tau==0.0) {
     748         129 :     if(height0_==std::numeric_limits<double>::max()) error("At least one between HEIGHT and TAU should be specified");
     749             :     // if tau is not set, we compute it here from the other input parameters
     750         129 :     if(welltemp_) tau=(kbt_*(biasf_-1.0))/height0_*getTimeStep()*stride_;
     751         110 :     else if(dampfactor_>0.0) tau=(kbt_*dampfactor_)/height0_*getTimeStep()*stride_;
     752             :   } else {
     753          22 :     if(height0_!=std::numeric_limits<double>::max()) error("At most one between HEIGHT and TAU should be specified");
     754          22 :     if(welltemp_) {
     755          19 :       if(biasf_!=1.0) height0_=(kbt_*(biasf_-1.0))/tau*getTimeStep()*stride_;
     756           4 :       else           height0_=kbt_/tau*getTimeStep()*stride_; // special case for gamma=1
     757             :     }
     758           3 :     else if(dampfactor_>0.0) height0_=(kbt_*dampfactor_)/tau*getTimeStep()*stride_;
     759           1 :     else error("TAU only makes sense in well-tempered or damped metadynamics");
     760             :   }
     761             : 
     762             :   // Grid Stuff
     763         153 :   std::vector<std::string> gmin(getNumberOfArguments());
     764         300 :   parseVector("GRID_MIN",gmin);
     765         150 :   if(gmin.size()!=getNumberOfArguments() && gmin.size()!=0) error("not enough values for GRID_MIN");
     766         150 :   std::vector<std::string> gmax(getNumberOfArguments());
     767         300 :   parseVector("GRID_MAX",gmax);
     768         150 :   if(gmax.size()!=getNumberOfArguments() && gmax.size()!=0) error("not enough values for GRID_MAX");
     769         150 :   std::vector<unsigned> gbin(getNumberOfArguments());
     770             :   std::vector<double>   gspacing;
     771         300 :   parseVector("GRID_BIN",gbin);
     772         150 :   if(gbin.size()!=getNumberOfArguments() && gbin.size()!=0) error("not enough values for GRID_BIN");
     773         300 :   parseVector("GRID_SPACING",gspacing);
     774         150 :   if(gspacing.size()!=getNumberOfArguments() && gspacing.size()!=0) error("not enough values for GRID_SPACING");
     775         150 :   if(gmin.size()!=gmax.size()) error("GRID_MAX and GRID_MIN should be either present or absent");
     776         150 :   if(gspacing.size()!=0 && gmin.size()==0) error("If GRID_SPACING is present also GRID_MIN and GRID_MAX should be present");
     777         150 :   if(gbin.size()!=0     && gmin.size()==0) error("If GRID_BIN is present also GRID_MIN and GRID_MAX should be present");
     778         150 :   if(gmin.size()!=0) {
     779          61 :     if(gbin.size()==0 && gspacing.size()==0) {
     780           6 :       if(adaptive_==FlexibleBin::none) {
     781           6 :         log<<"  Binsize not specified, 1/5 of sigma will be be used\n";
     782           6 :         plumed_assert(sigma0_.size()==getNumberOfArguments());
     783           6 :         gspacing.resize(getNumberOfArguments());
     784          13 :         for(unsigned i=0; i<gspacing.size(); i++) gspacing[i]=0.2*sigma0_[i];
     785             :       } else {
     786             :         // with adaptive hills and grid a sigma min must be specified
     787           0 :         for(unsigned i=0; i<sigma0min_.size(); i++) if(sigma0min_[i]<=0) error("When using ADAPTIVE Gaussians on a grid SIGMA_MIN must be specified");
     788           0 :         log<<"  Binsize not specified, 1/5 of sigma_min will be be used\n";
     789           0 :         gspacing.resize(getNumberOfArguments());
     790           0 :         for(unsigned i=0; i<gspacing.size(); i++) gspacing[i]=0.2*sigma0min_[i];
     791             :       }
     792          55 :     } else if(gspacing.size()!=0 && gbin.size()==0) {
     793           2 :       log<<"  The number of bins will be estimated from GRID_SPACING\n";
     794          53 :     } else if(gspacing.size()!=0 && gbin.size()!=0) {
     795           1 :       log<<"  You specified both GRID_BIN and GRID_SPACING\n";
     796           1 :       log<<"  The more conservative (highest) number of bins will be used for each variable\n";
     797             :     }
     798          61 :     if(gbin.size()==0) gbin.assign(getNumberOfArguments(),1);
     799          73 :     if(gspacing.size()!=0) for(unsigned i=0; i<getNumberOfArguments(); i++) {
     800             :         double a,b;
     801          13 :         Tools::convert(gmin[i],a);
     802          12 :         Tools::convert(gmax[i],b);
     803          12 :         unsigned n=std::ceil(((b-a)/gspacing[i]));
     804          12 :         if(gbin[i]<n) gbin[i]=n;
     805             :       }
     806             :   }
     807         149 :   if(gbin.size()>0) grid_=true;
     808             : 
     809         149 :   bool sparsegrid=false;
     810         149 :   parseFlag("GRID_SPARSE",sparsegrid);
     811         149 :   bool nospline=false;
     812         149 :   parseFlag("GRID_NOSPLINE",nospline);
     813         149 :   bool spline=!nospline;
     814         300 :   parse("GRID_WSTRIDE",wgridstride_);
     815             :   std::string gridfilename_;
     816         149 :   parse("GRID_WFILE",gridfilename_);
     817         149 :   parseFlag("STORE_GRIDS",storeOldGrids_);
     818         149 :   if(grid_ && gridfilename_.length()>0) {
     819          19 :     if(wgridstride_==0 ) error("frequency with which to output grid not specified use GRID_WSTRIDE");
     820             :   }
     821         149 :   if(grid_ && wgridstride_>0) {
     822          20 :     if(gridfilename_.length()==0) error("grid filename not specified use GRID_WFILE");
     823             :   }
     824             : 
     825             :   std::string gridreadfilename_;
     826         149 :   parse("GRID_RFILE",gridreadfilename_);
     827             : 
     828         149 :   if(!grid_&&gridfilename_.length()> 0) error("To write a grid you need first to define it!");
     829         149 :   if(!grid_&&gridreadfilename_.length()>0) error("To read a grid you need first to define it!");
     830             : 
     831             :   /*setup neighbor list stuff*/
     832         298 :   parseFlag("NLIST", nlist_);
     833         149 :   nlist_center_.resize(getNumberOfArguments());
     834         149 :   nlist_dev2_.resize(getNumberOfArguments());
     835         150 :   if(nlist_&&grid_) error("NLIST and GRID cannot be combined!");
     836             :   std::vector<double> nlist_param;
     837         298 :   parseVector("NLIST_PARAMETERS",nlist_param);
     838         149 :   if(nlist_param.size()==0)
     839             :   {
     840         149 :     nlist_param_[0]=6.0;//*DP2CUTOFF -> max distance of neighbors
     841         149 :     nlist_param_[1]=0.5;//*nlist_dev2_[i] -> condition for rebuilding
     842             :   }
     843             :   else
     844             :   {
     845           0 :     plumed_massert(nlist_param.size()==2,"two cutoff parameters are needed for the neighbor list");
     846           0 :     plumed_massert(nlist_param[0]>1.0,"the first of NLIST_PARAMETERS must be greater than 1. The smaller the first, the smaller should be the second as well");
     847           0 :     const double min_PARAM_1=(1.-1./std::sqrt(nlist_param[0]/2))+0.16;
     848           0 :     plumed_massert(nlist_param[1]>0,"the second of NLIST_PARAMETERS must be greater than 0");
     849           0 :     plumed_massert(nlist_param[1]<=min_PARAM_1,"the second of NLIST_PARAMETERS must be smaller to avoid systematic errors. Largest suggested value is: 1.16-1/sqrt(PARAM_0/2) = "+std::to_string(min_PARAM_1));
     850           0 :     nlist_param_[0]=nlist_param[0];
     851           0 :     nlist_param_[1]=nlist_param[1];
     852             :   }
     853             : 
     854             :   // Reweighting factor rct
     855         149 :   parseFlag("CALC_RCT",calc_rct_);
     856         149 :   if (calc_rct_) plumed_massert(grid_,"CALC_RCT is supported only if bias is on a grid");
     857         149 :   parse("RCT_USTRIDE",rct_ustride_);
     858             : 
     859         149 :   if(dampfactor_>0.0) {
     860           2 :     if(!grid_) error("With DAMPFACTOR you should use grids");
     861             :   }
     862             : 
     863             :   // Multiple walkers
     864         149 :   parse("WALKERS_N",mw_n_);
     865         149 :   parse("WALKERS_ID",mw_id_);
     866         149 :   if(mw_n_<=mw_id_) error("walker ID should be a numerical value less than the total number of walkers");
     867         149 :   parse("WALKERS_DIR",mw_dir_);
     868         149 :   parse("WALKERS_RSTRIDE",mw_rstride_);
     869             : 
     870             :   // MPI version
     871         149 :   parseFlag("WALKERS_MPI",walkers_mpi_);
     872             : 
     873             :   //If this Action is not compiled with MPI the user is informed and we exit gracefully
     874         149 :   if(walkers_mpi_) {
     875          39 :     plumed_assert(Communicator::plumedHasMPI()) << "Invalid walkers configuration: WALKERS_MPI flag requires MPI compilation";
     876          40 :     plumed_assert(Communicator::initialized()) << "Invalid walkers configuration: WALKERS_MPI needs the communicator correctly initialized.";
     877             :   }
     878             : 
     879             :   // Flying Gaussian
     880         148 :   parseFlag("FLYING_GAUSSIAN", flying_);
     881             : 
     882             :   // Inteval keyword
     883         149 :   std::vector<double> tmpI(2);
     884         296 :   parseVector("INTERVAL",tmpI);
     885         148 :   if(tmpI.size()!=2&&tmpI.size()!=0) error("both a lower and an upper limits must be provided with INTERVAL");
     886         148 :   else if(tmpI.size()==2) {
     887           2 :     lowI_=tmpI.at(0);
     888           2 :     uppI_=tmpI.at(1);
     889           2 :     if(getNumberOfArguments()!=1) error("INTERVAL limits correction works only for monodimensional metadynamics!");
     890           2 :     if(uppI_<lowI_) error("The Upper limit must be greater than the Lower limit!");
     891           2 :     if(getPntrToArgument(0)->isPeriodic()) error("INTERVAL cannot be used with periodic variables!");
     892           2 :     doInt_=true;
     893             :   }
     894             : 
     895         296 :   parseFlag("ACCELERATION",acceleration_);
     896             :   // Check for a restart acceleration if acceleration is active.
     897             :   std::string acc_rfilename;
     898         148 :   if(acceleration_) {
     899           8 :     parse("ACCELERATION_RFILE", acc_rfilename);
     900             :   }
     901             : 
     902         148 :   freq_adaptive_=false;
     903         148 :   parseFlag("FREQUENCY_ADAPTIVE",freq_adaptive_);
     904             :   //
     905         148 :   fa_update_frequency_=0;
     906         148 :   parse("FA_UPDATE_FREQUENCY",fa_update_frequency_);
     907         148 :   if(fa_update_frequency_!=0 && !freq_adaptive_) {
     908           0 :     plumed_merror("It doesn't make sense to use the FA_MAX_PACE keyword if frequency adaptive METAD hasn't been activated by using the FREQUENCY_ADAPTIVE flag");
     909             :   }
     910         148 :   if(fa_update_frequency_==0 && freq_adaptive_) {
     911           0 :     fa_update_frequency_=stride_;
     912             :   }
     913             :   //
     914         148 :   fa_max_stride_=0;
     915         148 :   parse("FA_MAX_PACE",fa_max_stride_);
     916         148 :   if(fa_max_stride_!=0 && !freq_adaptive_) {
     917           0 :     plumed_merror("It doesn't make sense to use the FA_MAX_PACE keyword if frequency adaptive METAD hasn't been activated by using the FREQUENCY_ADAPTIVE flag");
     918             :   }
     919             :   //
     920         148 :   fa_min_acceleration_=1.0;
     921         148 :   parse("FA_MIN_ACCELERATION",fa_min_acceleration_);
     922         148 :   if(fa_min_acceleration_!=1.0 && !freq_adaptive_) {
     923           0 :     plumed_merror("It doesn't make sense to use the FA_MIN_ACCELERATION keyword if frequency adaptive METAD hasn't been activated by using the FREQUENCY_ADAPTIVE flag");
     924             :   }
     925             : 
     926         148 :   checkRead();
     927             : 
     928         148 :   log.printf("  Gaussian width ");
     929         148 :   if (adaptive_==FlexibleBin::diffusion)log.printf(" (Note: The units of sigma are in timesteps) ");
     930         148 :   if (adaptive_==FlexibleBin::geometry)log.printf(" (Note: The units of sigma are in dist units) ");
     931         396 :   for(unsigned i=0; i<sigma0_.size(); ++i) log.printf(" %f",sigma0_[i]);
     932         148 :   log.printf("  Gaussian height %f\n",height0_);
     933         148 :   log.printf("  Gaussian deposition pace %d\n",stride_);
     934         148 :   log.printf("  Gaussian file %s\n",hillsfname.c_str());
     935         148 :   if(welltemp_) {
     936          38 :     log.printf("  Well-Tempered Bias Factor %f\n",biasf_);
     937          38 :     log.printf("  Hills relaxation time (tau) %f\n",tau);
     938          38 :     log.printf("  KbT %f\n",kbt_);
     939             :   }
     940             : 
     941             :   // Transition tempered metadynamics options
     942         148 :   if (tt_specs_.is_active) {
     943           3 :     logTemperingSpecs(tt_specs_);
     944             :     // Check that the appropriate transition bias quantity is calculated.
     945             :     // (Should never trip, given that the flag is automatically set.)
     946           3 :     if (!calc_transition_bias_) {
     947           0 :       error(" transition tempering requires calculation of a transition bias");
     948             :     }
     949             :   }
     950             : 
     951             :   // Overall tempering sanity check (this gets tricky when multiple are active).
     952             :   // When multiple temperings are active, it's fine to have one tempering attempt
     953             :   // to increase hill size with increasing bias, so long as the others can shrink
     954             :   // the hills faster than it increases their size in the long-time limit.
     955             :   // This set of checks ensures that the hill sizes eventually decay to zero as c(t)
     956             :   // diverges to infinity.
     957             :   // The alpha parameter allows hills to decay as 1/t^alpha instead of 1/t,
     958             :   // a slower decay, so as t -> infinity, only the temperings with the largest
     959             :   // alphas govern the final asymptotic decay. (Alpha helps prevent false convergence.)
     960         148 :   if (welltemp_ || dampfactor_ > 0.0 || tt_specs_.is_active) {
     961             :     // Determine the number of active temperings.
     962             :     int n_active = 0;
     963          43 :     if (welltemp_) n_active++;
     964          43 :     if (dampfactor_ > 0.0) n_active++;
     965          43 :     if (tt_specs_.is_active) n_active++;
     966             :     // Find the greatest alpha.
     967          43 :     double greatest_alpha = 0.0;
     968          43 :     if (welltemp_) greatest_alpha = std::max(greatest_alpha, 1.0);
     969          45 :     if (dampfactor_ > 0.0) greatest_alpha = std::max(greatest_alpha, 1.0);
     970          46 :     if (tt_specs_.is_active) greatest_alpha = std::max(greatest_alpha, tt_specs_.alpha);
     971             :     // Find the least alpha.
     972          43 :     double least_alpha = 1.0;
     973             :     if (welltemp_) least_alpha = std::min(least_alpha, 1.0);
     974          43 :     if (dampfactor_ > 0.0) least_alpha = std::min(least_alpha, 1.0);
     975          44 :     if (tt_specs_.is_active) least_alpha = std::min(least_alpha, tt_specs_.alpha);
     976             :     // Find the inverse harmonic average of the delta T parameters for all
     977             :     // of the temperings with the greatest alpha values.
     978             :     double total_governing_deltaT_inv = 0.0;
     979          43 :     if (welltemp_ && 1.0 == greatest_alpha && biasf_ != 1.0) total_governing_deltaT_inv += 1.0 / (biasf_ - 1.0);
     980          43 :     if (dampfactor_ > 0.0 && 1.0 == greatest_alpha) total_governing_deltaT_inv += 1.0 / (dampfactor_);
     981          43 :     if (tt_specs_.is_active && tt_specs_.alpha == greatest_alpha) total_governing_deltaT_inv += 1.0 / (tt_specs_.biasf - 1.0);
     982             :     // Give a newbie-friendly error message for people using one tempering if
     983             :     // only one is active.
     984          43 :     if (n_active == 1 && total_governing_deltaT_inv < 0.0) {
     985           0 :       error("for stable tempering, the bias factor must be greater than one");
     986             :       // Give a slightly more complex error message to users stacking multiple
     987             :       // tempering options at a time, but all with uniform alpha values.
     988          43 :     } else if (total_governing_deltaT_inv < 0.0 && greatest_alpha == least_alpha) {
     989           0 :       error("for stable tempering, the sum of the inverse Delta T parameters must be greater than zero!");
     990             :       // Give the most technical error message to users stacking multiple tempering
     991             :       // options with different alpha parameters.
     992          43 :     } else if (total_governing_deltaT_inv < 0.0 && greatest_alpha != least_alpha) {
     993           0 :       error("for stable tempering, the sum of the inverse Delta T parameters for the greatest asymptotic hill decay exponents must be greater than zero!");
     994             :     }
     995             :   }
     996             : 
     997         148 :   if(doInt_) log.printf("  Upper and Lower limits boundaries for the bias are activated at %f - %f\n", lowI_, uppI_);
     998             : 
     999         148 :   if(grid_) {
    1000          60 :     log.printf("  Grid min");
    1001         161 :     for(unsigned i=0; i<gmin.size(); ++i) log.printf(" %s",gmin[i].c_str() );
    1002          60 :     log.printf("\n");
    1003          60 :     log.printf("  Grid max");
    1004         161 :     for(unsigned i=0; i<gmax.size(); ++i) log.printf(" %s",gmax[i].c_str() );
    1005          60 :     log.printf("\n");
    1006          60 :     log.printf("  Grid bin");
    1007         161 :     for(unsigned i=0; i<gbin.size(); ++i) log.printf(" %u",gbin[i]);
    1008          60 :     log.printf("\n");
    1009          60 :     if(spline) {log.printf("  Grid uses spline interpolation\n");}
    1010          60 :     if(sparsegrid) {log.printf("  Grid uses sparse grid\n");}
    1011          60 :     if(wgridstride_>0) {log.printf("  Grid is written on file %s with stride %d\n",gridfilename_.c_str(),wgridstride_);}
    1012             :   }
    1013             : 
    1014         148 :   if(mw_n_>1) {
    1015           6 :     if(walkers_mpi_) error("MPI version of multiple walkers is not compatible with filesystem version of multiple walkers");
    1016           6 :     log.printf("  %d multiple walkers active\n",mw_n_);
    1017           6 :     log.printf("  walker id %d\n",mw_id_);
    1018           6 :     log.printf("  reading stride %d\n",mw_rstride_);
    1019           6 :     if(mw_dir_!="")log.printf("  directory with hills files %s\n",mw_dir_.c_str());
    1020             :   } else {
    1021         142 :     if(walkers_mpi_) {
    1022          38 :       log.printf("  Multiple walkers active using MPI communnication\n");
    1023          38 :       if(mw_dir_!="")log.printf("  directory with hills files %s\n",mw_dir_.c_str());
    1024          38 :       if(comm.Get_rank()==0) {
    1025             :         // Only root of group can communicate with other walkers
    1026          23 :         mpi_nw_=multi_sim_comm.Get_size();
    1027             :       }
    1028             :       // Communicate to the other members of the same group
    1029             :       // info abount number of walkers and walker index
    1030          38 :       comm.Bcast(mpi_nw_,0);
    1031             :     }
    1032             :   }
    1033             : 
    1034         148 :   if(flying_) {
    1035           6 :     if(!walkers_mpi_) error("Flying Gaussian method must be used with MPI version of multiple walkers");
    1036           6 :     log.printf("  Flying Gaussian method with %d walkers active\n",mpi_nw_);
    1037             :   }
    1038             : 
    1039         148 :   if(nlist_) {
    1040           2 :     addComponent("nlker");
    1041           2 :     componentIsNotPeriodic("nlker");
    1042           2 :     addComponent("nlsteps");
    1043           2 :     componentIsNotPeriodic("nlsteps");
    1044             :   }
    1045             : 
    1046         148 :   if(calc_rct_) {
    1047          18 :     addComponent("rbias"); componentIsNotPeriodic("rbias");
    1048          12 :     addComponent("rct"); componentIsNotPeriodic("rct");
    1049           6 :     log.printf("  The c(t) reweighting factor will be calculated every %u hills\n",rct_ustride_);
    1050          12 :     getPntrToComponent("rct")->set(reweight_factor_);
    1051             :   }
    1052             : 
    1053         150 :   if(calc_work_) { addComponent("work"); componentIsNotPeriodic("work"); }
    1054             : 
    1055         148 :   if(acceleration_) {
    1056           4 :     if (kbt_ == 0.0) {
    1057           0 :       error("The calculation of the acceleration works only if simulation temperature has been defined");
    1058             :     }
    1059           4 :     log.printf("  calculation on the fly of the acceleration factor\n");
    1060          12 :     addComponent("acc"); componentIsNotPeriodic("acc");
    1061             :     // Set the initial value of the the acceleration.
    1062             :     // If this is not a restart, set to 1.0.
    1063           4 :     if (acc_rfilename.length() == 0) {
    1064           4 :       getPntrToComponent("acc")->set(1.0);
    1065           2 :       if(getRestart()) {
    1066           1 :         log.printf("  WARNING: calculating the acceleration factor in a restarted run without reading in the previous value will most likely lead to incorrect results.\n");
    1067           1 :         log.printf("           You should use the ACCELERATION_RFILE keyword.\n");
    1068             :       }
    1069             :       // Otherwise, read and set the restart value.
    1070             :     } else {
    1071             :       // Restart of acceleration does not make sense if the restart timestep is zero.
    1072             :       //if (getStep() == 0) {
    1073             :       //  error("Restarting calculation of acceleration factors works only if simulation timestep is restarted correctly");
    1074             :       //}
    1075             :       // Open the ACCELERATION_RFILE.
    1076           2 :       IFile acc_rfile;
    1077           2 :       acc_rfile.link(*this);
    1078           2 :       if(acc_rfile.FileExist(acc_rfilename)) {
    1079           2 :         acc_rfile.open(acc_rfilename);
    1080             :       } else {
    1081           0 :         error("The ACCELERATION_RFILE file you want to read: " + acc_rfilename + ", cannot be found!");
    1082             :       }
    1083             :       // Read the file to find the restart acceleration.
    1084           2 :       double acc_rmean=0.0;
    1085           2 :       double acc_rtime=0.0;
    1086             :       bool found=false;
    1087           2 :       std::string acclabel = getLabel() + ".acc";
    1088           2 :       acc_rfile.allowIgnoredFields();
    1089         248 :       while(acc_rfile.scanField("time", acc_rtime)) {
    1090         122 :         acc_rfile.scanField(acclabel, acc_rmean);
    1091         122 :         acc_rfile.scanField();
    1092             :         found=true;
    1093             :       }
    1094           2 :       if(!found) error("The ACCELERATION_RFILE file you want to read: " + acc_rfilename + ", does not contain a time field!");
    1095           2 :       acc_restart_mean_ = acc_rmean;
    1096             :       // Set component based on the read values.
    1097           2 :       getPntrToComponent("acc")->set(acc_rmean);
    1098           2 :       log.printf("  initial acceleration factor read from file %s: value of %f at time %f\n",acc_rfilename.c_str(),acc_rmean,acc_rtime);
    1099           2 :     }
    1100             :   }
    1101             : 
    1102         148 :   if (calc_max_bias_) {
    1103           0 :     if (!grid_) error("Calculating the maximum bias on the fly works only with a grid");
    1104           0 :     log.printf("  calculation on the fly of the maximum bias max(V(s,t)) \n");
    1105           0 :     addComponent("maxbias");
    1106           0 :     componentIsNotPeriodic("maxbias");
    1107             :   }
    1108             : 
    1109         148 :   if (calc_transition_bias_) {
    1110          13 :     if (!grid_) error("Calculating the transition bias on the fly works only with a grid");
    1111          13 :     log.printf("  calculation on the fly of the transition bias V*(t)\n");
    1112          26 :     addComponent("transbias");
    1113          13 :     componentIsNotPeriodic("transbias");
    1114          13 :     log<<"  Number of transition wells "<<transitionwells_.size()<<"\n";
    1115          13 :     if (transitionwells_.size() == 0) error("Calculating the transition bias on the fly requires definition of at least one transition well");
    1116             :     // Check that a grid is in use.
    1117          13 :     if (!grid_) error(" transition barrier finding requires a grid for the bias");
    1118             :     // Log the wells and check that they are in the grid.
    1119          39 :     for (unsigned i = 0; i < transitionwells_.size(); i++) {
    1120             :       // Log the coordinate.
    1121          26 :       log.printf("  Transition well %d at coordinate ", i);
    1122          64 :       for (unsigned j = 0; j < getNumberOfArguments(); j++) log.printf("%f ", transitionwells_[i][j]);
    1123          26 :       log.printf("\n");
    1124             :       // Check that the coordinate is in the grid.
    1125          64 :       for (unsigned j = 0; j < getNumberOfArguments(); j++) {
    1126             :         double max, min;
    1127          38 :         Tools::convert(gmin[j], min);
    1128          38 :         Tools::convert(gmax[j], max);
    1129          38 :         if (transitionwells_[i][j] < min || transitionwells_[i][j] > max) error(" transition well is not in grid");
    1130             :       }
    1131             :     }
    1132             :   }
    1133             : 
    1134         148 :   if(freq_adaptive_) {
    1135           2 :     if(!acceleration_) {
    1136           0 :       plumed_merror("Frequency adaptive metadynamics only works if the calculation of the acceleration factor is enabled with the ACCELERATION keyword\n");
    1137             :     }
    1138           2 :     if(walkers_mpi_) {
    1139           0 :       plumed_merror("Combining frequency adaptive metadynamics with MPI multiple walkers is not allowed");
    1140             :     }
    1141             : 
    1142           2 :     log.printf("  Frequency adaptive metadynamics enabled\n");
    1143           2 :     if(getRestart() && acc_rfilename.length() == 0) {
    1144           0 :       log.printf("  WARNING: using the frequency adaptive scheme in a restarted run without reading in the previous value of the acceleration factor will most likely lead to incorrect results.\n");
    1145           0 :       log.printf("           You should use the ACCELERATION_RFILE keyword.\n");
    1146             :     }
    1147           2 :     log.printf("  The frequency for hill addition will change dynamically based on the metadynamics acceleration factor\n");
    1148           2 :     log.printf("  The hill addition frequency will be updated every %d steps\n",fa_update_frequency_);
    1149           2 :     if(fa_min_acceleration_>1.0) {
    1150           2 :       log.printf("  The hill addition frequency will only be updated once the metadynamics acceleration factor becomes larger than %.1f \n",fa_min_acceleration_);
    1151             :     }
    1152           2 :     if(fa_max_stride_!=0) {
    1153           2 :       log.printf("  The hill addition frequency will not become larger than %d steps\n",fa_max_stride_);
    1154             :     }
    1155           4 :     addComponent("pace"); componentIsNotPeriodic("pace");
    1156           2 :     updateFrequencyAdaptiveStride();
    1157             :   }
    1158             : 
    1159             :   // initializing and checking grid
    1160             :   bool restartedFromGrid=false;  // restart from grid file
    1161         148 :   if(grid_) {
    1162          60 :     if(!(gridreadfilename_.length()>0)) {
    1163             :       // check for mesh and sigma size
    1164         116 :       for(unsigned i=0; i<getNumberOfArguments(); i++) {
    1165             :         double a,b;
    1166          74 :         Tools::convert(gmin[i],a);
    1167          74 :         Tools::convert(gmax[i],b);
    1168          74 :         double mesh=(b-a)/((double)gbin[i]);
    1169          74 :         if(adaptive_==FlexibleBin::none) {
    1170          74 :           if(mesh>0.5*sigma0_[i]) log<<"  WARNING: Using a METAD with a Grid Spacing larger than half of the Gaussians width (SIGMA) can produce artifacts\n";
    1171             :         } else {
    1172           0 :           if(sigma0min_[i]<0.) error("When using ADAPTIVE Gaussians on a grid SIGMA_MIN must be specified");
    1173           0 :           if(mesh>0.5*sigma0min_[i]) log<<"  WARNING: to use a METAD with a GRID and ADAPTIVE you need to set a Grid Spacing lower than half of the Gaussians (SIGMA_MIN) \n";
    1174             :         }
    1175             :       }
    1176          42 :       std::string funcl=getLabel() + ".bias";
    1177          42 :       if(!sparsegrid) {BiasGrid_=Tools::make_unique<Grid>(funcl,getArguments(),gmin,gmax,gbin,spline,true);}
    1178           6 :       else {BiasGrid_=Tools::make_unique<SparseGrid>(funcl,getArguments(),gmin,gmax,gbin,spline,true);}
    1179          42 :       std::vector<std::string> actualmin=BiasGrid_->getMin();
    1180          42 :       std::vector<std::string> actualmax=BiasGrid_->getMax();
    1181         116 :       for(unsigned i=0; i<getNumberOfArguments(); i++) {
    1182             :         std::string is;
    1183          74 :         Tools::convert(i,is);
    1184          74 :         if(gmin[i]!=actualmin[i]) error("GRID_MIN["+is+"] must be adjusted to "+actualmin[i]+" to fit periodicity");
    1185          74 :         if(gmax[i]!=actualmax[i]) error("GRID_MAX["+is+"] must be adjusted to "+actualmax[i]+" to fit periodicity");
    1186             :       }
    1187          42 :     } else {
    1188             :       // read the grid in input, find the keys
    1189          18 :       if(walkers_mpi_&&gridreadfilename_.at(0)!='/') {
    1190             :         //if possible the root replica will share its current folder so that all walkers will read the same file
    1191           0 :         const std::string ret = std::filesystem::current_path();
    1192           0 :         gridreadfilename_ = "/" + gridreadfilename_;
    1193           0 :         gridreadfilename_ = ret + gridreadfilename_;
    1194           0 :         if(comm.Get_rank()==0) multi_sim_comm.Bcast(gridreadfilename_,0);
    1195           0 :         comm.Bcast(gridreadfilename_,0);
    1196             :       }
    1197          18 :       IFile gridfile;
    1198          18 :       gridfile.link(*this);
    1199          18 :       if(gridfile.FileExist(gridreadfilename_)) {
    1200          18 :         gridfile.open(gridreadfilename_);
    1201             :       } else {
    1202           0 :         error("The GRID file you want to read: " + gridreadfilename_ + ", cannot be found!");
    1203             :       }
    1204          18 :       std::string funcl=getLabel() + ".bias";
    1205          36 :       BiasGrid_=GridBase::create(funcl, getArguments(), gridfile, gmin, gmax, gbin, sparsegrid, spline, true);
    1206          18 :       if(BiasGrid_->getDimension()!=getNumberOfArguments()) error("mismatch between dimensionality of input grid and number of arguments");
    1207          45 :       for(unsigned i=0; i<getNumberOfArguments(); ++i) {
    1208          54 :         if( getPntrToArgument(i)->isPeriodic()!=BiasGrid_->getIsPeriodic()[i] ) error("periodicity mismatch between arguments and input bias");
    1209             :         double a, b;
    1210          27 :         Tools::convert(gmin[i],a);
    1211          27 :         Tools::convert(gmax[i],b);
    1212          27 :         double mesh=(b-a)/((double)gbin[i]);
    1213          27 :         if(mesh>0.5*sigma0_[i]) log<<"  WARNING: Using a METAD with a Grid Spacing larger than half of the Gaussians width can produce artifacts\n";
    1214             :       }
    1215          18 :       log.printf("  Restarting from %s\n",gridreadfilename_.c_str());
    1216          18 :       if(getRestart()) restartedFromGrid=true;
    1217          18 :     }
    1218             :   }
    1219             : 
    1220             :   // if we are restarting from GRID and using WALKERS_MPI we can check that all walkers have actually read the grid
    1221         148 :   if(getRestart()&&walkers_mpi_) {
    1222           9 :     std::vector<int> restarted(mpi_nw_,0);
    1223           9 :     if(comm.Get_rank()==0) multi_sim_comm.Allgather(int(restartedFromGrid), restarted);
    1224           9 :     comm.Bcast(restarted,0);
    1225             :     int result = std::accumulate(restarted.begin(),restarted.end(),0);
    1226           9 :     if(result!=0&&result!=mpi_nw_) error("in this WALKERS_MPI run some replica have restarted from GRID while other do not!");
    1227             :   }
    1228             : 
    1229         186 :   if(walkers_mpi_&&mw_dir_==""&&hillsfname.at(0)!='/') {
    1230             :     //if possible the root replica will share its current folder so that all walkers will read the same file
    1231          76 :     const std::string ret = std::filesystem::current_path();
    1232             :     mw_dir_ = ret;
    1233          38 :     mw_dir_ = mw_dir_ + "/";
    1234          38 :     if(comm.Get_rank()==0) multi_sim_comm.Bcast(mw_dir_,0);
    1235          38 :     comm.Bcast(mw_dir_,0);
    1236             :   }
    1237             : 
    1238             :   // creating std::vector of ifile* for hills reading
    1239             :   // open all files at the beginning and read Gaussians if restarting
    1240             :   bool restartedFromHills=false;  // restart from hills files
    1241         308 :   for(int i=0; i<mw_n_; ++i) {
    1242             :     std::string fname;
    1243         160 :     if(mw_dir_!="") {
    1244          47 :       if(mw_n_>1) {
    1245           9 :         std::stringstream out; out << i;
    1246          18 :         fname = mw_dir_+"/"+hillsfname+"."+out.str();
    1247          47 :       } else if(walkers_mpi_) {
    1248          76 :         fname = mw_dir_+"/"+hillsfname;
    1249             :       } else {
    1250             :         fname = hillsfname;
    1251             :       }
    1252             :     } else {
    1253         113 :       if(mw_n_>1) {
    1254           9 :         std::stringstream out; out << i;
    1255          18 :         fname = hillsfname+"."+out.str();
    1256           9 :       } else {
    1257             :         fname = hillsfname;
    1258             :       }
    1259             :     }
    1260         160 :     ifiles_.emplace_back(Tools::make_unique<IFile>());
    1261             :     // this is just a shortcut pointer to the last element:
    1262             :     IFile *ifile = ifiles_.back().get();
    1263         160 :     ifilesnames_.push_back(fname);
    1264         160 :     ifile->link(*this);
    1265         160 :     if(ifile->FileExist(fname)) {
    1266          33 :       ifile->open(fname);
    1267          33 :       if(getRestart()&&!restartedFromGrid) {
    1268          19 :         log.printf("  Restarting from %s:",ifilesnames_[i].c_str());
    1269          19 :         readGaussians(ifiles_[i].get());
    1270             :         restartedFromHills=true;
    1271             :       }
    1272          33 :       ifiles_[i]->reset(false);
    1273             :       // close only the walker own hills file for later writing
    1274          33 :       if(i==mw_id_) ifiles_[i]->close();
    1275             :     } else {
    1276             :       // in case a file does not exist and we are restarting, complain that the file was not found
    1277         127 :       if(getRestart()&&!restartedFromGrid) error("restart file "+fname+" not found");
    1278             :     }
    1279             :   }
    1280             : 
    1281             :   // if we are restarting from FILE and using WALKERS_MPI we can check that all walkers have actually read the FILE
    1282         148 :   if(getRestart()&&walkers_mpi_) {
    1283           9 :     std::vector<int> restarted(mpi_nw_,0);
    1284           9 :     if(comm.Get_rank()==0) multi_sim_comm.Allgather(int(restartedFromHills), restarted);
    1285           9 :     comm.Bcast(restarted,0);
    1286             :     int result = std::accumulate(restarted.begin(),restarted.end(),0);
    1287           9 :     if(result!=0&&result!=mpi_nw_) error("in this WALKERS_MPI run some replica have restarted from FILE while other do not!");
    1288             :   }
    1289             : 
    1290         148 :   comm.Barrier();
    1291             :   // this barrier is needed when using walkers_mpi
    1292             :   // to be sure that all files have been read before
    1293             :   // backing them up
    1294             :   // it should not be used when walkers_mpi is false otherwise
    1295             :   // it would introduce troubles when using replicas without METAD
    1296             :   // (e.g. in bias exchange with a neutral replica)
    1297             :   // see issue #168 on github
    1298         148 :   if(comm.Get_rank()==0 && walkers_mpi_) multi_sim_comm.Barrier();
    1299             : 
    1300         148 :   if(targetfilename_.length()>0) {
    1301           2 :     IFile gridfile; gridfile.open(targetfilename_);
    1302           2 :     std::string funcl=getLabel() + ".target";
    1303           4 :     TargetGrid_=GridBase::create(funcl,getArguments(),gridfile,false,false,true);
    1304           2 :     if(TargetGrid_->getDimension()!=getNumberOfArguments()) error("mismatch between dimensionality of input grid and number of arguments");
    1305           4 :     for(unsigned i=0; i<getNumberOfArguments(); ++i) {
    1306           4 :       if( getPntrToArgument(i)->isPeriodic()!=TargetGrid_->getIsPeriodic()[i] ) error("periodicity mismatch between arguments and input bias");
    1307             :     }
    1308           2 :   }
    1309             : 
    1310         148 :   if(getRestart()) {
    1311             :     // if this is a restart the neighbor list should be immediately updated
    1312          37 :     if(nlist_) nlist_update_=true;
    1313             :     // Calculate the Tiwary-Parrinello reweighting factor if we are restarting from previous hills
    1314          37 :     if(calc_rct_) computeReweightingFactor();
    1315             :     // Calculate all special bias quantities desired if restarting with nonzero bias.
    1316          37 :     if(calc_max_bias_) {
    1317           0 :       max_bias_ = BiasGrid_->getMaxValue();
    1318           0 :       getPntrToComponent("maxbias")->set(max_bias_);
    1319             :     }
    1320          37 :     if(calc_transition_bias_) {
    1321          13 :       transition_bias_ = getTransitionBarrierBias();
    1322          26 :       getPntrToComponent("transbias")->set(transition_bias_);
    1323             :     }
    1324             :   }
    1325             : 
    1326             :   // open grid file for writing
    1327         148 :   if(wgridstride_>0) {
    1328          19 :     gridfile_.link(*this);
    1329          19 :     if(walkers_mpi_) {
    1330           0 :       int r=0;
    1331           0 :       if(comm.Get_rank()==0) r=multi_sim_comm.Get_rank();
    1332           0 :       comm.Bcast(r,0);
    1333           0 :       if(r>0) gridfilename_="/dev/null";
    1334           0 :       gridfile_.enforceSuffix("");
    1335             :     }
    1336          19 :     if(mw_n_>1) gridfile_.enforceSuffix("");
    1337          19 :     gridfile_.open(gridfilename_);
    1338             :   }
    1339             : 
    1340             :   // open hills file for writing
    1341         148 :   hillsOfile_.link(*this);
    1342         148 :   if(walkers_mpi_) {
    1343          38 :     int r=0;
    1344          38 :     if(comm.Get_rank()==0) r=multi_sim_comm.Get_rank();
    1345          38 :     comm.Bcast(r,0);
    1346          38 :     if(r>0) ifilesnames_[mw_id_]="/dev/null";
    1347          76 :     hillsOfile_.enforceSuffix("");
    1348             :   }
    1349         154 :   if(mw_n_>1) hillsOfile_.enforceSuffix("");
    1350         148 :   hillsOfile_.open(ifilesnames_[mw_id_]);
    1351         148 :   if(fmt_.length()>0) hillsOfile_.fmtField(fmt_);
    1352         148 :   hillsOfile_.addConstantField("multivariate");
    1353         148 :   hillsOfile_.addConstantField("kerneltype");
    1354         148 :   if(doInt_) {
    1355           4 :     hillsOfile_.addConstantField("lower_int").printField("lower_int",lowI_);
    1356           4 :     hillsOfile_.addConstantField("upper_int").printField("upper_int",uppI_);
    1357             :   }
    1358             :   hillsOfile_.setHeavyFlush();
    1359             :   // output periodicities of variables
    1360         415 :   for(unsigned i=0; i<getNumberOfArguments(); ++i) hillsOfile_.setupPrintValue( getPntrToArgument(i) );
    1361             : 
    1362             :   bool concurrent=false;
    1363         148 :   const ActionSet&actionSet(plumed.getActionSet());
    1364        1941 :   for(const auto & p : actionSet) if(dynamic_cast<MetaD*>(p.get())) { concurrent=true; break; }
    1365         148 :   if(concurrent) log<<"  You are using concurrent metadynamics\n";
    1366         148 :   if(rect_biasf_.size()>0) {
    1367          18 :     if(walkers_mpi_) {
    1368          12 :       log<<"  You are using RECT in its 'altruistic' implementation\n";
    1369             :     }{
    1370          18 :       log<<"  You are using RECT\n";
    1371             :     }
    1372             :   }
    1373             : 
    1374         296 :   log<<"  Bibliography "<<plumed.cite("Laio and Parrinello, PNAS 99, 12562 (2002)");
    1375         186 :   if(welltemp_) log<<plumed.cite("Barducci, Bussi, and Parrinello, Phys. Rev. Lett. 100, 020603 (2008)");
    1376         148 :   if(tt_specs_.is_active) {
    1377           6 :     log << plumed.cite("Dama, Rotskoff, Parrinello, and Voth, J. Chem. Theory Comput. 10, 3626 (2014)");
    1378           6 :     log << plumed.cite("Dama, Parrinello, and Voth, Phys. Rev. Lett. 112, 240602 (2014)");
    1379             :   }
    1380         192 :   if(mw_n_>1||walkers_mpi_) log<<plumed.cite("Raiteri, Laio, Gervasio, Micheletti, and Parrinello, J. Phys. Chem. B 110, 3533 (2006)");
    1381         169 :   if(adaptive_!=FlexibleBin::none) log<<plumed.cite("Branduardi, Bussi, and Parrinello, J. Chem. Theory Comput. 8, 2247 (2012)");
    1382         150 :   if(doInt_) log<<plumed.cite("Baftizadeh, Cossio, Pietrucci, and Laio, Curr. Phys. Chem. 2, 79 (2012)");
    1383         152 :   if(acceleration_) log<<plumed.cite("Pratyush and Parrinello, Phys. Rev. Lett. 111, 230602 (2013)");
    1384         154 :   if(calc_rct_) log<<plumed.cite("Pratyush and Parrinello, J. Phys. Chem. B, 119, 736 (2015)");
    1385         228 :   if(concurrent || rect_biasf_.size()>0) log<<plumed.cite("Gil-Ley and Bussi, J. Chem. Theory Comput. 11, 1077 (2015)");
    1386         160 :   if(rect_biasf_.size()>0 && walkers_mpi_) log<<plumed.cite("Hosek, Toulcova, Bortolato, and Spiwok, J. Phys. Chem. B 120, 2209 (2016)");
    1387         148 :   if(targetfilename_.length()>0) {
    1388           4 :     log<<plumed.cite("White, Dama, and Voth, J. Chem. Theory Comput. 11, 2451 (2015)");
    1389           4 :     log<<plumed.cite("Marinelli and Faraldo-Gómez,  Biophys. J. 108, 2779 (2015)");
    1390           4 :     log<<plumed.cite("Gil-Ley, Bottaro, and Bussi, J. Chem. Theory Comput. 12, 2790 (2016)");
    1391             :   }
    1392         150 :   if(freq_adaptive_) log<<plumed.cite("Wang, Valsson, Tiwary, Parrinello, and Lindorff-Larsen, J. Chem. Phys. 149, 072309 (2018)");
    1393         148 :   log<<"\n";
    1394         396 : }
    1395             : 
    1396         151 : void MetaD::readTemperingSpecs(TemperingSpecs &t_specs)
    1397             : {
    1398             :   // Set global tempering parameters.
    1399         151 :   parse(t_specs.name_stem + "BIASFACTOR", t_specs.biasf);
    1400         151 :   if (t_specs.biasf != -1.0) {
    1401           3 :     if (kbt_ == 0.0) {
    1402           0 :       error("Unless the MD engine passes the temperature to plumed, with tempered metad you must specify it using TEMP");
    1403             :     }
    1404           3 :     if (t_specs.biasf == 1.0) {
    1405           0 :       error("A bias factor of 1 corresponds to zero delta T and zero hill size, so it is not allowed.");
    1406             :     }
    1407           3 :     t_specs.is_active = true;
    1408           3 :     parse(t_specs.name_stem + "BIASTHRESHOLD", t_specs.threshold);
    1409           3 :     if (t_specs.threshold < 0.0) {
    1410           0 :       error(t_specs.name + " bias threshold is nonsensical");
    1411             :     }
    1412           3 :     parse(t_specs.name_stem + "ALPHA", t_specs.alpha);
    1413           3 :     if (t_specs.alpha <= 0.0 || t_specs.alpha > 1.0) {
    1414           0 :       error(t_specs.name + " decay shape parameter alpha is nonsensical");
    1415             :     }
    1416             :   }
    1417         151 : }
    1418             : 
    1419           3 : void MetaD::logTemperingSpecs(const TemperingSpecs &t_specs)
    1420             : {
    1421           3 :   log.printf("  %s bias factor %f\n", t_specs.name.c_str(), t_specs.biasf);
    1422           3 :   log.printf("  KbT %f\n", kbt_);
    1423           3 :   if (t_specs.threshold != 0.0) log.printf("  %s bias threshold %f\n", t_specs.name.c_str(), t_specs.threshold);
    1424           3 :   if (t_specs.alpha != 1.0) log.printf("  %s decay shape parameter alpha %f\n", t_specs.name.c_str(), t_specs.alpha);
    1425           3 : }
    1426             : 
    1427        6034 : void MetaD::readGaussians(IFile *ifile)
    1428             : {
    1429        6034 :   unsigned ncv=getNumberOfArguments();
    1430        6034 :   std::vector<double> center(ncv);
    1431        6034 :   std::vector<double> sigma(ncv);
    1432             :   double height;
    1433             :   int nhills=0;
    1434        6034 :   bool multivariate=false;
    1435             : 
    1436             :   std::vector<Value> tmpvalues;
    1437       18115 :   for(unsigned j=0; j<getNumberOfArguments(); ++j) tmpvalues.push_back( Value( this, getPntrToArgument(j)->getName(), false ) );
    1438             : 
    1439        8181 :   while(scanOneHill(ifile,tmpvalues,center,sigma,height,multivariate))
    1440             :   {
    1441        2147 :     nhills++;
    1442             :     // note that for gamma=1 we store directly -F
    1443        2147 :     if(welltemp_ && biasf_>1.0) height*=(biasf_-1.0)/biasf_;
    1444        2147 :     addGaussian(Gaussian(multivariate,height,center,sigma));
    1445             :   }
    1446        6034 :   log.printf("      %d Gaussians read\n",nhills);
    1447       12068 : }
    1448             : 
    1449        2922 : void MetaD::writeGaussian(const Gaussian& hill, OFile&file)
    1450             : {
    1451        2922 :   unsigned ncv=getNumberOfArguments();
    1452        2922 :   file.printField("time",getTimeStep()*getStep());
    1453        8194 :   for(unsigned i=0; i<ncv; ++i) {
    1454        5272 :     file.printField(getPntrToArgument(i),hill.center[i]);
    1455             :   }
    1456        5844 :   hillsOfile_.printField("kerneltype","stretched-gaussian");
    1457        2922 :   if(hill.multivariate) {
    1458         892 :     hillsOfile_.printField("multivariate","true");
    1459             :     Matrix<double> mymatrix(ncv,ncv);
    1460             :     unsigned k=0;
    1461        1047 :     for(unsigned i=0; i<ncv; i++) {
    1462        1357 :       for(unsigned j=i; j<ncv; j++) {
    1463             :         // recompose the full inverse matrix
    1464         756 :         mymatrix(i,j)=mymatrix(j,i)=hill.sigma[k];
    1465         756 :         k++;
    1466             :       }
    1467             :     }
    1468             :     // invert it
    1469             :     Matrix<double> invmatrix(ncv,ncv);
    1470         446 :     Invert(mymatrix,invmatrix);
    1471             :     // enforce symmetry
    1472        1047 :     for(unsigned i=0; i<ncv; i++) {
    1473        1357 :       for(unsigned j=i; j<ncv; j++) {
    1474         756 :         invmatrix(i,j)=invmatrix(j,i);
    1475             :       }
    1476             :     }
    1477             : 
    1478             :     // do cholesky so to have a "sigma like" number
    1479             :     Matrix<double> lower(ncv,ncv);
    1480         446 :     cholesky(invmatrix,lower);
    1481             :     // loop in band form
    1482        1047 :     for(unsigned i=0; i<ncv; i++) {
    1483        1357 :       for(unsigned j=0; j<ncv-i; j++) {
    1484        1512 :         file.printField("sigma_"+getPntrToArgument(j+i)->getName()+"_"+getPntrToArgument(j)->getName(),lower(j+i,j));
    1485             :       }
    1486             :     }
    1487             :   } else {
    1488        4952 :     hillsOfile_.printField("multivariate","false");
    1489        7147 :     for(unsigned i=0; i<ncv; ++i)
    1490        9342 :       file.printField("sigma_"+getPntrToArgument(i)->getName(),hill.sigma[i]);
    1491             :   }
    1492        2922 :   double height=hill.height;
    1493             :   // note that for gamma=1 we store directly -F
    1494        2922 :   if(welltemp_ && biasf_>1.0) height*=biasf_/(biasf_-1.0);
    1495        5844 :   file.printField("height",height).printField("biasf",biasf_);
    1496        4431 :   if(mw_n_>1) file.printField("clock",int(std::time(0)));
    1497        2922 :   file.printField();
    1498        2922 : }
    1499             : 
    1500        5231 : void MetaD::addGaussian(const Gaussian& hill)
    1501             : {
    1502        5231 :   if(grid_) {
    1503         640 :     size_t ncv=getNumberOfArguments();
    1504         640 :     std::vector<unsigned> nneighb=getGaussianSupport(hill);
    1505         640 :     std::vector<Grid::index_t> neighbors=BiasGrid_->getNeighbors(hill.center,nneighb);
    1506         640 :     std::vector<double> der(ncv);
    1507         640 :     std::vector<double> xx(ncv);
    1508         640 :     if(comm.Get_size()==1) {
    1509             :       // for performance reasons and thread safety
    1510         544 :       std::vector<double> dp(ncv);
    1511       55324 :       for(size_t i=0; i<neighbors.size(); ++i) {
    1512       54780 :         Grid::index_t ineigh=neighbors[i];
    1513      158922 :         for(unsigned j=0; j<ncv; ++j) der[j]=0.0;
    1514       54780 :         BiasGrid_->getPoint(ineigh,xx);
    1515       54780 :         double bias=evaluateGaussianAndDerivatives(xx,hill,der,dp);
    1516       54780 :         BiasGrid_->addValueAndDerivatives(ineigh,bias,der);
    1517             :       }
    1518             :     } else {
    1519          96 :       unsigned stride=comm.Get_size();
    1520          96 :       unsigned rank=comm.Get_rank();
    1521          96 :       std::vector<double> allder(ncv*neighbors.size(),0.0);
    1522          96 :       std::vector<double> n_der(ncv,0.0);
    1523          96 :       std::vector<double> allbias(neighbors.size(),0.0);
    1524             :       // for performance reasons and thread safety
    1525          96 :       std::vector<double> dp(ncv);
    1526       27148 :       for(unsigned i=rank; i<neighbors.size(); i+=stride) {
    1527       27052 :         Grid::index_t ineigh=neighbors[i];
    1528       81156 :         for(unsigned j=0; j<ncv; ++j) n_der[j]=0.0;
    1529       27052 :         BiasGrid_->getPoint(ineigh,xx);
    1530       27052 :         allbias[i]=evaluateGaussianAndDerivatives(xx,hill,n_der,dp);
    1531       81156 :         for(unsigned j=0; j<ncv; j++) allder[ncv*i+j]=n_der[j];
    1532             :       }
    1533          96 :       comm.Sum(allbias);
    1534          96 :       comm.Sum(allder);
    1535      103200 :       for(unsigned i=0; i<neighbors.size(); ++i) {
    1536      103104 :         Grid::index_t ineigh=neighbors[i];
    1537      309312 :         for(unsigned j=0; j<ncv; ++j) der[j]=allder[ncv*i+j];
    1538      103104 :         BiasGrid_->addValueAndDerivatives(ineigh,allbias[i],der);
    1539             :       }
    1540             :     }
    1541        4591 :   } else hills_.push_back(hill);
    1542        5231 : }
    1543             : 
    1544         640 : std::vector<unsigned> MetaD::getGaussianSupport(const Gaussian& hill)
    1545             : {
    1546             :   std::vector<unsigned> nneigh;
    1547             :   std::vector<double> cutoff;
    1548         640 :   unsigned ncv=getNumberOfArguments();
    1549             : 
    1550             :   // traditional or flexible hill?
    1551         640 :   if(hill.multivariate) {
    1552             :     unsigned k=0;
    1553             :     Matrix<double> mymatrix(ncv,ncv);
    1554           0 :     for(unsigned i=0; i<ncv; i++) {
    1555           0 :       for(unsigned j=i; j<ncv; j++) {
    1556             :         // recompose the full inverse matrix
    1557           0 :         mymatrix(i,j)=mymatrix(j,i)=hill.sigma[k];
    1558           0 :         k++;
    1559             :       }
    1560             :     }
    1561             :     // Reinvert so to have the ellipses
    1562             :     Matrix<double> myinv(ncv,ncv);
    1563           0 :     Invert(mymatrix,myinv);
    1564             :     Matrix<double> myautovec(ncv,ncv);
    1565           0 :     std::vector<double> myautoval(ncv); //should I take this or their square root?
    1566           0 :     diagMat(myinv,myautoval,myautovec);
    1567             :     double maxautoval=0.;
    1568             :     unsigned ind_maxautoval; ind_maxautoval=ncv;
    1569           0 :     for(unsigned i=0; i<ncv; i++) {
    1570           0 :       if(myautoval[i]>maxautoval) {maxautoval=myautoval[i]; ind_maxautoval=i;}
    1571             :     }
    1572           0 :     for(unsigned i=0; i<ncv; i++) {
    1573           0 :       cutoff.push_back(std::sqrt(2.0*dp2cutoff)*std::abs(std::sqrt(maxautoval)*myautovec(i,ind_maxautoval)));
    1574             :     }
    1575             :   } else {
    1576        1618 :     for(unsigned i=0; i<ncv; ++i) {
    1577         978 :       cutoff.push_back(std::sqrt(2.0*dp2cutoff)*hill.sigma[i]);
    1578             :     }
    1579             :   }
    1580             : 
    1581         640 :   if(doInt_) {
    1582           2 :     if(hill.center[0]+cutoff[0] > uppI_ || hill.center[0]-cutoff[0] < lowI_) {
    1583             :       // in this case, we updated the entire grid to avoid problems
    1584           2 :       return BiasGrid_->getNbin();
    1585             :     } else {
    1586           0 :       nneigh.push_back( static_cast<unsigned>(ceil(cutoff[0]/BiasGrid_->getDx()[0])) );
    1587             :       return nneigh;
    1588             :     }
    1589             :   } else {
    1590        1614 :     for(unsigned i=0; i<ncv; i++) {
    1591         976 :       nneigh.push_back( static_cast<unsigned>(ceil(cutoff[i]/BiasGrid_->getDx()[i])) );
    1592             :     }
    1593             :   }
    1594             : 
    1595             :   return nneigh;
    1596             : }
    1597             : 
    1598         285 : double MetaD::getBias(const std::vector<double>& cv)
    1599             : {
    1600         285 :   double bias=0.0;
    1601         285 :   if(grid_) bias = BiasGrid_->getValue(cv);
    1602             :   else {
    1603          82 :     unsigned nt=OpenMP::getNumThreads();
    1604          82 :     unsigned stride=comm.Get_size();
    1605          82 :     unsigned rank=comm.Get_rank();
    1606             : 
    1607          82 :     if(!nlist_) {
    1608          82 :       #pragma omp parallel num_threads(nt)
    1609             :       {
    1610             :         #pragma omp for reduction(+:bias) nowait
    1611             :         for(unsigned i=rank; i<hills_.size(); i+=stride) bias+=evaluateGaussian(cv,hills_[i]);
    1612             :       }
    1613             :     } else {
    1614           0 :       #pragma omp parallel num_threads(nt)
    1615             :       {
    1616             :         #pragma omp for reduction(+:bias) nowait
    1617             :         for(unsigned i=rank; i<nlist_hills_.size(); i+=stride) bias+=evaluateGaussian(cv,nlist_hills_[i]);
    1618             :       }
    1619             :     }
    1620          82 :     comm.Sum(bias);
    1621             :   }
    1622             : 
    1623         285 :   return bias;
    1624             : }
    1625             : 
    1626        8395 : double MetaD::getBiasAndDerivatives(const std::vector<double>& cv, std::vector<double>& der)
    1627             : {
    1628        8395 :   unsigned ncv=getNumberOfArguments();
    1629        8395 :   double bias=0.0;
    1630        8395 :   if(grid_) {
    1631        1506 :     std::vector<double> vder(ncv);
    1632        1506 :     bias=BiasGrid_->getValueAndDerivatives(cv,vder);
    1633        3498 :     for(unsigned i=0; i<ncv; i++) der[i]=vder[i];
    1634             :   } else {
    1635        6889 :     unsigned nt=OpenMP::getNumThreads();
    1636        6889 :     unsigned stride=comm.Get_size();
    1637        6889 :     unsigned rank=comm.Get_rank();
    1638             : 
    1639        6889 :     if(!nlist_) {
    1640        6884 :       if(hills_.size()<2*nt*stride||nt==1) {
    1641             :         // for performance reasons and thread safety
    1642        2588 :         std::vector<double> dp(ncv);
    1643        6705 :         for(unsigned i=rank; i<hills_.size(); i+=stride) {
    1644        4117 :           bias+=evaluateGaussianAndDerivatives(cv,hills_[i],der,dp);
    1645             :         }
    1646             :       } else {
    1647        4296 :         #pragma omp parallel num_threads(nt)
    1648             :         {
    1649             :           std::vector<double> omp_deriv(ncv,0.);
    1650             :           // for performance reasons and thread safety
    1651             :           std::vector<double> dp(ncv);
    1652             :           #pragma omp for reduction(+:bias) nowait
    1653             :           for(unsigned i=rank; i<hills_.size(); i+=stride) {
    1654             :             bias+=evaluateGaussianAndDerivatives(cv,hills_[i],omp_deriv,dp);
    1655             :           }
    1656             :           #pragma omp critical
    1657             :           for(unsigned i=0; i<ncv; i++) der[i]+=omp_deriv[i];
    1658             :         }
    1659             :       }
    1660             :     } else {
    1661           5 :       if(hills_.size()<2*nt*stride||nt==1) {
    1662             :         // for performance reasons and thread safety
    1663           0 :         std::vector<double> dp(ncv);
    1664           0 :         for(unsigned i=rank; i<nlist_hills_.size(); i+=stride) {
    1665           0 :           bias+=evaluateGaussianAndDerivatives(cv,nlist_hills_[i],der,dp);
    1666             :         }
    1667             :       } else {
    1668           5 :         #pragma omp parallel num_threads(nt)
    1669             :         {
    1670             :           std::vector<double> omp_deriv(ncv,0.);
    1671             :           // for performance reasons and thread safety
    1672             :           std::vector<double> dp(ncv);
    1673             :           #pragma omp for reduction(+:bias) nowait
    1674             :           for(unsigned i=rank; i<nlist_hills_.size(); i+=stride) {
    1675             :             bias+=evaluateGaussianAndDerivatives(cv,nlist_hills_[i],omp_deriv,dp);
    1676             :           }
    1677             :           #pragma omp critical
    1678             :           for(unsigned i=0; i<ncv; i++) der[i]+=omp_deriv[i];
    1679             :         }
    1680             :       }
    1681             :     }
    1682        6889 :     comm.Sum(bias);
    1683        6889 :     comm.Sum(der);
    1684             :   }
    1685             : 
    1686        8395 :   return bias;
    1687             : }
    1688             : 
    1689           0 : double MetaD::getGaussianNormalization(const Gaussian& hill)
    1690             : {
    1691             :   double norm=1;
    1692           0 :   unsigned ncv=hill.center.size();
    1693             : 
    1694           0 :   if(hill.multivariate) {
    1695             :     // recompose the full sigma from the upper diag cholesky
    1696             :     unsigned k=0;
    1697             :     Matrix<double> mymatrix(ncv,ncv);
    1698           0 :     for(unsigned i=0; i<ncv; i++) {
    1699           0 :       for(unsigned j=i; j<ncv; j++) {
    1700           0 :         mymatrix(i,j)=mymatrix(j,i)=hill.sigma[k]; // recompose the full inverse matrix
    1701           0 :         k++;
    1702             :       }
    1703           0 :       double ldet; logdet( mymatrix, ldet );
    1704           0 :       norm = std::exp( ldet );  // Not sure here if mymatrix is sigma or inverse
    1705             :     }
    1706             :   } else {
    1707           0 :     for(unsigned i=0; i<hill.sigma.size(); i++) norm*=hill.sigma[i];
    1708             :   }
    1709             : 
    1710           0 :   return norm*std::pow(2*pi,static_cast<double>(ncv)/2.0);
    1711             : }
    1712             : 
    1713         192 : double MetaD::evaluateGaussian(const std::vector<double>& cv, const Gaussian& hill)
    1714             : {
    1715         192 :   unsigned ncv=cv.size();
    1716             : 
    1717             :   // I use a pointer here because cv is const (and should be const)
    1718             :   // but when using doInt it is easier to locally replace cv[0] with
    1719             :   // the upper/lower limit in case it is out of range
    1720             :   double tmpcv[1];
    1721             :   const double *pcv=NULL; // pointer to cv
    1722         192 :   if(ncv>0) pcv=&cv[0];
    1723         192 :   if(doInt_) {
    1724           0 :     plumed_assert(ncv==1);
    1725           0 :     tmpcv[0]=cv[0];
    1726           0 :     if(cv[0]<lowI_) tmpcv[0]=lowI_;
    1727           0 :     if(cv[0]>uppI_) tmpcv[0]=uppI_;
    1728             :     pcv=&(tmpcv[0]);
    1729             :   }
    1730             : 
    1731             :   double dp2=0.0;
    1732         192 :   if(hill.multivariate) {
    1733             :     unsigned k=0;
    1734             :     // recompose the full sigma from the upper diag cholesky
    1735             :     Matrix<double> mymatrix(ncv,ncv);
    1736           0 :     for(unsigned i=0; i<ncv; i++) {
    1737           0 :       for(unsigned j=i; j<ncv; j++) {
    1738           0 :         mymatrix(i,j)=mymatrix(j,i)=hill.sigma[k]; // recompose the full inverse matrix
    1739           0 :         k++;
    1740             :       }
    1741             :     }
    1742           0 :     for(unsigned i=0; i<ncv; i++) {
    1743           0 :       double dp_i=difference(i,hill.center[i],pcv[i]);
    1744           0 :       for(unsigned j=i; j<ncv; j++) {
    1745           0 :         if(i==j) {
    1746           0 :           dp2+=dp_i*dp_i*mymatrix(i,j)*0.5;
    1747             :         } else {
    1748           0 :           double dp_j=difference(j,hill.center[j],pcv[j]);
    1749           0 :           dp2+=dp_i*dp_j*mymatrix(i,j);
    1750             :         }
    1751             :       }
    1752             :     }
    1753             :   } else {
    1754         576 :     for(unsigned i=0; i<ncv; i++) {
    1755         384 :       double dp=difference(i,hill.center[i],pcv[i])*hill.invsigma[i];
    1756         384 :       dp2+=dp*dp;
    1757             :     }
    1758         192 :     dp2*=0.5;
    1759             :   }
    1760             : 
    1761             :   double bias=0.0;
    1762         192 :   if(dp2<dp2cutoff) bias=hill.height*(stretchA*std::exp(-dp2)+stretchB);
    1763             : 
    1764         192 :   return bias;
    1765             : }
    1766             : 
    1767     2408699 : double MetaD::evaluateGaussianAndDerivatives(const std::vector<double>& cv, const Gaussian& hill, std::vector<double>& der, std::vector<double>& dp_)
    1768             : {
    1769     2408699 :   unsigned ncv=cv.size();
    1770             : 
    1771             :   // I use a pointer here because cv is const (and should be const)
    1772             :   // but when using doInt it is easier to locally replace cv[0] with
    1773             :   // the upper/lower limit in case it is out of range
    1774             :   const double *pcv=NULL; // pointer to cv
    1775             :   double tmpcv[1]; // tmp array with cv (to be used with doInt_)
    1776     2408699 :   if(ncv>0) pcv=&cv[0];
    1777     2408699 :   if(doInt_) {
    1778         602 :     plumed_assert(ncv==1);
    1779         602 :     tmpcv[0]=cv[0];
    1780         602 :     if(cv[0]<lowI_) tmpcv[0]=lowI_;
    1781         602 :     if(cv[0]>uppI_) tmpcv[0]=uppI_;
    1782             :     pcv=&(tmpcv[0]);
    1783             :   }
    1784             : 
    1785             :   bool int_der=false;
    1786     2408699 :   if(doInt_) {
    1787         602 :     if(cv[0]<lowI_ || cv[0]>uppI_) int_der=true;
    1788             :   }
    1789             : 
    1790             :   double dp2=0.0;
    1791             :   double bias=0.0;
    1792     2408699 :   if(hill.multivariate) {
    1793             :     unsigned k=0;
    1794             :     // recompose the full sigma from the upper diag cholesky
    1795             :     Matrix<double> mymatrix(ncv,ncv);
    1796      161635 :     for(unsigned i=0; i<ncv; i++) {
    1797      162513 :       for(unsigned j=i; j<ncv; j++) {
    1798       81476 :         mymatrix(i,j)=mymatrix(j,i)=hill.sigma[k]; // recompose the full inverse matrix
    1799       81476 :         k++;
    1800             :       }
    1801             :     }
    1802      161635 :     for(unsigned i=0; i<ncv; i++) {
    1803       81037 :       dp_[i]=difference(i,hill.center[i],pcv[i]);
    1804      162513 :       for(unsigned j=i; j<ncv; j++) {
    1805       81476 :         if(i==j) {
    1806       81037 :           dp2+=dp_[i]*dp_[i]*mymatrix(i,j)*0.5;
    1807             :         } else {
    1808         439 :           double dp_j=difference(j,hill.center[j],pcv[j]);
    1809         439 :           dp2+=dp_[i]*dp_j*mymatrix(i,j);
    1810             :         }
    1811             :       }
    1812             :     }
    1813       80598 :     if(dp2<dp2cutoff) {
    1814       77683 :       bias=hill.height*std::exp(-dp2);
    1815       77683 :       if(!int_der) {
    1816      155673 :         for(unsigned i=0; i<ncv; i++) {
    1817             :           double tmp=0.0;
    1818      156594 :           for(unsigned j=0; j<ncv; j++) tmp += dp_[j]*mymatrix(i,j)*bias;
    1819       77990 :           der[i]-=tmp*stretchA;
    1820             :         }
    1821             :       } else {
    1822           0 :         for(unsigned i=0; i<ncv; i++) der[i]=0.;
    1823             :       }
    1824       77683 :       bias=stretchA*bias+hill.height*stretchB;
    1825             :     }
    1826             :   } else {
    1827     6974661 :     for(unsigned i=0; i<ncv; i++) {
    1828     4646560 :       dp_[i]=difference(i,hill.center[i],pcv[i])*hill.invsigma[i];
    1829     4646560 :       dp2+=dp_[i]*dp_[i];
    1830             :     }
    1831     2328101 :     dp2*=0.5;
    1832     2328101 :     if(dp2<dp2cutoff) {
    1833     1355707 :       bias=hill.height*std::exp(-dp2);
    1834     1355707 :       if(!int_der) {
    1835     4058342 :         for(unsigned i=0; i<ncv; i++) der[i]-=bias*dp_[i]*hill.invsigma[i]*stretchA;
    1836             :       } else {
    1837         478 :         for(unsigned i=0; i<ncv; i++) der[i]=0.;
    1838             :       }
    1839     1355707 :       bias=stretchA*bias+hill.height*stretchB;
    1840             :     }
    1841             :   }
    1842             : 
    1843     2408699 :   return bias;
    1844             : }
    1845             : 
    1846        2736 : double MetaD::getHeight(const std::vector<double>& cv)
    1847             : {
    1848        2736 :   double height=height0_;
    1849        2736 :   if(welltemp_) {
    1850         275 :     double vbias = getBias(cv);
    1851         275 :     if(biasf_>1.0) {
    1852         259 :       height = height0_*std::exp(-vbias/(kbt_*(biasf_-1.0)));
    1853             :     } else {
    1854             :       // notice that if gamma=1 we store directly -F
    1855          16 :       height = height0_*std::exp(-vbias/kbt_);
    1856             :     }
    1857             :   }
    1858        2736 :   if(dampfactor_>0.0) {
    1859          18 :     plumed_assert(BiasGrid_);
    1860          18 :     double m=BiasGrid_->getMaxValue();
    1861          18 :     height*=std::exp(-m/(kbt_*(dampfactor_)));
    1862             :   }
    1863        2736 :   if (tt_specs_.is_active) {
    1864          60 :     double vbarrier = transition_bias_;
    1865          60 :     temperHeight(height, tt_specs_, vbarrier);
    1866             :   }
    1867        2736 :   if(TargetGrid_) {
    1868          18 :     double f=TargetGrid_->getValue(cv)-TargetGrid_->getMaxValue();
    1869          18 :     height*=std::exp(f/kbt_);
    1870             :   }
    1871        2736 :   return height;
    1872             : }
    1873             : 
    1874          60 : void MetaD::temperHeight(double& height, const TemperingSpecs& t_specs, const double tempering_bias)
    1875             : {
    1876          60 :   if (t_specs.alpha == 1.0) {
    1877          80 :     height *= std::exp(-std::max(0.0, tempering_bias - t_specs.threshold) / (kbt_ * (t_specs.biasf - 1.0)));
    1878             :   } else {
    1879          40 :     height *= std::pow(1 + (1 - t_specs.alpha) / t_specs.alpha * std::max(0.0, tempering_bias - t_specs.threshold) / (kbt_ * (t_specs.biasf - 1.0)), - t_specs.alpha / (1 - t_specs.alpha));
    1880             :   }
    1881          60 : }
    1882             : 
    1883        8435 : void MetaD::calculate()
    1884             : {
    1885             :   // this is because presently there is no way to properly pass information
    1886             :   // on adaptive hills (diff) after exchanges:
    1887        8435 :   if(adaptive_==FlexibleBin::diffusion && getExchangeStep()) error("ADAPTIVE=DIFF is not compatible with replica exchange");
    1888             : 
    1889        8435 :   const unsigned ncv=getNumberOfArguments();
    1890        8435 :   std::vector<double> cv(ncv);
    1891       21082 :   for(unsigned i=0; i<ncv; ++i) cv[i]=getArgument(i);
    1892             : 
    1893        8435 :   if(nlist_) {
    1894           5 :     nlist_steps_++;
    1895           5 :     if(getExchangeStep()) nlist_update_=true;
    1896             :     else {
    1897          11 :       for(unsigned i=0; i<ncv; ++i) {
    1898           8 :         double d = difference(i, cv[i], nlist_center_[i]);
    1899           8 :         double nk_dist2 = d*d/nlist_dev2_[i];
    1900           8 :         if(nk_dist2>nlist_param_[1]) {nlist_update_=true; break;}
    1901             :       }
    1902             :     }
    1903           5 :     if(nlist_update_) updateNlist();
    1904             :   }
    1905             : 
    1906             :   double ene = 0.;
    1907        8435 :   std::vector<double> der(ncv,0.);
    1908        8435 :   if(biasf_!=1.0) ene = getBiasAndDerivatives(cv,der);
    1909        8435 :   setBias(ene);
    1910       21082 :   for(unsigned i=0; i<ncv; i++) setOutputForce(i,-der[i]);
    1911             : 
    1912        8440 :   if(calc_work_) getPntrToComponent("work")->set(work_);
    1913        8545 :   if(calc_rct_) getPntrToComponent("rbias")->set(ene - reweight_factor_);
    1914             :   // calculate the acceleration factor
    1915        8435 :   if(acceleration_&&!isFirstStep_) {
    1916         329 :     acc_ += static_cast<double>(getStride()) * std::exp(ene/(kbt_));
    1917         329 :     const double mean_acc = acc_/((double) getStep());
    1918         329 :     getPntrToComponent("acc")->set(mean_acc);
    1919        8435 :   } else if (acceleration_ && isFirstStep_ && acc_restart_mean_ > 0.0) {
    1920           2 :     acc_ = acc_restart_mean_ * static_cast<double>(getStep());
    1921           2 :     if(freq_adaptive_) {
    1922             :       // has to be done here if restarting, as the acc is not defined before
    1923           1 :       updateFrequencyAdaptiveStride();
    1924             :     }
    1925             :   }
    1926        8435 : }
    1927             : 
    1928        6239 : void MetaD::update()
    1929             : {
    1930             :   // adding hills criteria (could be more complex though)
    1931             :   bool nowAddAHill;
    1932        6239 :   if(getStep()%current_stride_==0 && !isFirstStep_) nowAddAHill=true;
    1933             :   else {
    1934             :     nowAddAHill=false;
    1935        3503 :     isFirstStep_=false;
    1936             :   }
    1937             : 
    1938        6239 :   unsigned ncv=getNumberOfArguments();
    1939        6239 :   std::vector<double> cv(ncv);
    1940       16690 :   for(unsigned i=0; i<ncv; ++i) cv[i] = getArgument(i);
    1941             : 
    1942             :   double vbias=0.;
    1943        6239 :   if(calc_work_) vbias=getBias(cv);
    1944             : 
    1945             :   // if you use adaptive, call the FlexibleBin
    1946             :   bool multivariate=false;
    1947        6239 :   if(adaptive_!=FlexibleBin::none) {
    1948         778 :     flexbin_->update(nowAddAHill);
    1949             :     multivariate=true;
    1950             :   }
    1951             : 
    1952             :   std::vector<double> thissigma;
    1953        6239 :   if(nowAddAHill) {
    1954             :     // add a Gaussian
    1955        2736 :     double height=getHeight(cv);
    1956             :     // returns upper diagonal inverse
    1957        3110 :     if(adaptive_!=FlexibleBin::none) thissigma=flexbin_->getInverseMatrix();
    1958             :     // returns normal sigma
    1959        2362 :     else thissigma=sigma0_;
    1960             : 
    1961             :     // In case we use walkers_mpi, it is now necessary to communicate with other replicas.
    1962        2736 :     if(walkers_mpi_) {
    1963             :       // Allocate arrays to store all walkers hills
    1964         174 :       std::vector<double> all_cv(mpi_nw_*ncv,0.0);
    1965         174 :       std::vector<double> all_sigma(mpi_nw_*thissigma.size(),0.0);
    1966         174 :       std::vector<double> all_height(mpi_nw_,0.0);
    1967         174 :       std::vector<int>    all_multivariate(mpi_nw_,0);
    1968         174 :       if(comm.Get_rank()==0) {
    1969             :         // Communicate (only root)
    1970          99 :         multi_sim_comm.Allgather(cv,all_cv);
    1971          99 :         multi_sim_comm.Allgather(thissigma,all_sigma);
    1972             :         // notice that if gamma=1 we store directly -F so this scaling is not necessary:
    1973          99 :         multi_sim_comm.Allgather(height*(biasf_>1.0?biasf_/(biasf_-1.0):1.0),all_height);
    1974          99 :         multi_sim_comm.Allgather(int(multivariate),all_multivariate);
    1975             :       }
    1976             :       // Share info with group members
    1977         174 :       comm.Bcast(all_cv,0);
    1978         174 :       comm.Bcast(all_sigma,0);
    1979         174 :       comm.Bcast(all_height,0);
    1980         174 :       comm.Bcast(all_multivariate,0);
    1981             : 
    1982             :       // Flying Gaussian
    1983         174 :       if (flying_) {
    1984          54 :         hills_.clear();
    1985          54 :         comm.Barrier();
    1986             :       }
    1987             : 
    1988         696 :       for(unsigned i=0; i<mpi_nw_; i++) {
    1989             :         // actually add hills one by one
    1990         522 :         std::vector<double> cv_now(ncv);
    1991         522 :         std::vector<double> sigma_now(thissigma.size());
    1992        1566 :         for(unsigned j=0; j<ncv; j++) cv_now[j]=all_cv[i*ncv+j];
    1993        1674 :         for(unsigned j=0; j<thissigma.size(); j++) sigma_now[j]=all_sigma[i*thissigma.size()+j];
    1994             :         // notice that if gamma=1 we store directly -F so this scaling is not necessary:
    1995         522 :         double fact=(biasf_>1.0?(biasf_-1.0)/biasf_:1.0);
    1996         522 :         Gaussian newhill=Gaussian(all_multivariate[i],all_height[i]*fact,cv_now,sigma_now);
    1997         522 :         addGaussian(newhill);
    1998         522 :         if(!flying_) writeGaussian(newhill,hillsOfile_);
    1999         522 :       }
    2000             :     } else {
    2001        2562 :       Gaussian newhill=Gaussian(multivariate,height,cv,thissigma);
    2002        2562 :       addGaussian(newhill);
    2003        2562 :       writeGaussian(newhill,hillsOfile_);
    2004        2562 :     }
    2005             : 
    2006             :     // this is to update the hills neighbor list
    2007        2736 :     if(nlist_) nlist_update_=true;
    2008             :   }
    2009             : 
    2010             :   // this should be outside of the if block in case
    2011             :   // mw_rstride_ is not a multiple of stride_
    2012        6239 :   if(mw_n_>1 && getStep()%mw_rstride_==0) hillsOfile_.flush();
    2013             : 
    2014        6239 :   if(calc_work_) {
    2015           5 :     if(nlist_) updateNlist();
    2016           5 :     double vbias1=getBias(cv);
    2017           5 :     work_+=vbias1-vbias;
    2018             :   }
    2019             : 
    2020             :   // dump grid on file
    2021        6239 :   if(wgridstride_>0&&(getStep()%wgridstride_==0||getCPT())) {
    2022             :     // in case old grids are stored, a sequence of grids should appear
    2023             :     // this call results in a repetition of the header:
    2024          91 :     if(storeOldGrids_) gridfile_.clearFields();
    2025             :     // in case only latest grid is stored, file should be rewound
    2026             :     // this will overwrite previously written grids
    2027             :     else {
    2028          51 :       int r = 0;
    2029          51 :       if(walkers_mpi_) {
    2030           0 :         if(comm.Get_rank()==0) r=multi_sim_comm.Get_rank();
    2031           0 :         comm.Bcast(r,0);
    2032             :       }
    2033          51 :       if(r==0) gridfile_.rewind();
    2034             :     }
    2035          91 :     BiasGrid_->writeToFile(gridfile_);
    2036             :     // if a single grid is stored, it is necessary to flush it, otherwise
    2037             :     // the file might stay empty forever (when a single grid is not large enough to
    2038             :     // trigger flushing from the operating system).
    2039             :     // on the other hand, if grids are stored one after the other this is
    2040             :     // no necessary, and we leave the flushing control to the user as usual
    2041             :     // (with FLUSH keyword)
    2042          91 :     if(!storeOldGrids_) gridfile_.flush();
    2043             :   }
    2044             : 
    2045             :   // if multiple walkers and time to read Gaussians
    2046        6239 :   if(mw_n_>1 && getStep()%mw_rstride_==0) {
    2047       12048 :     for(int i=0; i<mw_n_; ++i) {
    2048             :       // don't read your own Gaussians
    2049        9036 :       if(i==mw_id_) continue;
    2050             :       // if the file is not open yet
    2051        6024 :       if(!(ifiles_[i]->isOpen())) {
    2052             :         // check if it exists now and open it!
    2053           9 :         if(ifiles_[i]->FileExist(ifilesnames_[i])) {
    2054           9 :           ifiles_[i]->open(ifilesnames_[i]);
    2055           9 :           ifiles_[i]->reset(false);
    2056             :         }
    2057             :         // otherwise read the new Gaussians
    2058             :       } else {
    2059        6015 :         log.printf("  Reading hills from %s:",ifilesnames_[i].c_str());
    2060        6015 :         readGaussians(ifiles_[i].get());
    2061        6015 :         ifiles_[i]->reset(false);
    2062             :       }
    2063             :     }
    2064             :     // this is to update the hills neighbor list
    2065        3012 :     if(nlist_) nlist_update_=true;
    2066             :   }
    2067             : 
    2068             :   // Recalculate special bias quantities whenever the bias has been changed by the update.
    2069        6239 :   bool bias_has_changed = (nowAddAHill || (mw_n_ > 1 && getStep() % mw_rstride_ == 0));
    2070        6239 :   if (calc_rct_ && bias_has_changed && getStep()%(stride_*rct_ustride_)==0) computeReweightingFactor();
    2071        6239 :   if (calc_max_bias_ && bias_has_changed) {
    2072           0 :     max_bias_ = BiasGrid_->getMaxValue();
    2073           0 :     getPntrToComponent("maxbias")->set(max_bias_);
    2074             :   }
    2075        6239 :   if (calc_transition_bias_ && bias_has_changed) {
    2076         260 :     transition_bias_ = getTransitionBarrierBias();
    2077         520 :     getPntrToComponent("transbias")->set(transition_bias_);
    2078             :   }
    2079             : 
    2080             :   // Frequency adaptive metadynamics - update hill addition frequency
    2081        6239 :   if(freq_adaptive_ && getStep()%fa_update_frequency_==0) {
    2082         151 :     updateFrequencyAdaptiveStride();
    2083             :   }
    2084        6239 : }
    2085             : 
    2086             : /// takes a pointer to the file and a template std::string with values v and gives back the next center, sigma and height
    2087        8181 : bool MetaD::scanOneHill(IFile* ifile, std::vector<Value>& tmpvalues, std::vector<double>& center, std::vector<double>& sigma, double& height, bool& multivariate)
    2088             : {
    2089             :   double dummy;
    2090        8181 :   multivariate=false;
    2091       16362 :   if(ifile->scanField("time",dummy)) {
    2092        2147 :     unsigned ncv=tmpvalues.size();
    2093        6395 :     for(unsigned i=0; i<ncv; ++i) {
    2094        4248 :       ifile->scanField( &tmpvalues[i] );
    2095        4248 :       if( tmpvalues[i].isPeriodic() && ! getPntrToArgument(i)->isPeriodic() ) {
    2096           0 :         error("in hills file periodicity for variable " + tmpvalues[i].getName() + " does not match periodicity in input");
    2097        4248 :       } else if( tmpvalues[i].isPeriodic() ) {
    2098           0 :         std::string imin, imax; tmpvalues[i].getDomain( imin, imax );
    2099           0 :         std::string rmin, rmax; getPntrToArgument(i)->getDomain( rmin, rmax );
    2100           0 :         if( imin!=rmin || imax!=rmax ) {
    2101           0 :           error("in hills file periodicity for variable " + tmpvalues[i].getName() + " does not match periodicity in input");
    2102             :         }
    2103             :       }
    2104        4248 :       center[i]=tmpvalues[i].get();
    2105             :     }
    2106             :     // scan for kerneltype
    2107        2147 :     std::string ktype="stretched-gaussian";
    2108        6432 :     if( ifile->FieldExist("kerneltype") ) ifile->scanField("kerneltype",ktype);
    2109        2147 :     if( ktype=="gaussian" ) {
    2110          12 :       noStretchWarning();
    2111        2135 :     } else if( ktype!="stretched-gaussian") {
    2112           0 :       error("non Gaussian kernels are not supported in MetaD");
    2113             :     }
    2114             :     // scan for multivariate label: record the actual file position so to eventually rewind
    2115             :     std::string sss;
    2116        4294 :     ifile->scanField("multivariate",sss);
    2117        2147 :     if(sss=="true") multivariate=true;
    2118        2147 :     else if(sss=="false") multivariate=false;
    2119           0 :     else plumed_merror("cannot parse multivariate = "+ sss);
    2120        2147 :     if(multivariate) {
    2121           0 :       sigma.resize(ncv*(ncv+1)/2);
    2122             :       Matrix<double> upper(ncv,ncv);
    2123             :       Matrix<double> lower(ncv,ncv);
    2124           0 :       for(unsigned i=0; i<ncv; i++) {
    2125           0 :         for(unsigned j=0; j<ncv-i; j++) {
    2126           0 :           ifile->scanField("sigma_"+getPntrToArgument(j+i)->getName()+"_"+getPntrToArgument(j)->getName(),lower(j+i,j));
    2127           0 :           upper(j,j+i)=lower(j+i,j);
    2128             :         }
    2129             :       }
    2130             :       Matrix<double> mymult(ncv,ncv);
    2131             :       Matrix<double> invmatrix(ncv,ncv);
    2132           0 :       mult(lower,upper,mymult);
    2133             :       // now invert and get the sigmas
    2134           0 :       Invert(mymult,invmatrix);
    2135             :       // put the sigmas in the usual order: upper diagonal (this time in normal form and not in band form)
    2136             :       unsigned k=0;
    2137           0 :       for(unsigned i=0; i<ncv; i++) {
    2138           0 :         for(unsigned j=i; j<ncv; j++) {
    2139           0 :           sigma[k]=invmatrix(i,j);
    2140           0 :           k++;
    2141             :         }
    2142             :       }
    2143             :     } else {
    2144        6395 :       for(unsigned i=0; i<ncv; ++i) {
    2145        8496 :         ifile->scanField("sigma_"+getPntrToArgument(i)->getName(),sigma[i]);
    2146             :       }
    2147             :     }
    2148             : 
    2149        2147 :     ifile->scanField("height",height);
    2150        2147 :     ifile->scanField("biasf",dummy);
    2151        6258 :     if(ifile->FieldExist("clock")) ifile->scanField("clock",dummy);
    2152        4294 :     if(ifile->FieldExist("lower_int")) ifile->scanField("lower_int",dummy);
    2153        4294 :     if(ifile->FieldExist("upper_int")) ifile->scanField("upper_int",dummy);
    2154        2147 :     ifile->scanField();
    2155             :     return true;
    2156             :   } else {
    2157             :     return false;
    2158             :   }
    2159             : }
    2160             : 
    2161         102 : void MetaD::computeReweightingFactor()
    2162             : {
    2163         102 :   if(biasf_==1.0) { // in this case we have no bias, so reweight factor is 0.0
    2164           0 :     getPntrToComponent("rct")->set(0.0);
    2165           0 :     return;
    2166             :   }
    2167             : 
    2168         102 :   double Z_0=0; //proportional to the integral of exp(-beta*F)
    2169         102 :   double Z_V=0; //proportional to the integral of exp(-beta*(F+V))
    2170         102 :   double minusBetaF=biasf_/(biasf_-1.)/kbt_;
    2171         102 :   double minusBetaFplusV=1./(biasf_-1.)/kbt_;
    2172         102 :   if (biasf_==-1.0) { //non well-tempered case
    2173           0 :     minusBetaF=1./kbt_;
    2174             :     minusBetaFplusV=0;
    2175             :   }
    2176         102 :   max_bias_=BiasGrid_->getMaxValue(); //to avoid exp overflow
    2177             : 
    2178         102 :   const unsigned rank=comm.Get_rank();
    2179         102 :   const unsigned stride=comm.Get_size();
    2180      920504 :   for (Grid::index_t t=rank; t<BiasGrid_->getSize(); t+=stride) {
    2181      920402 :     const double val=BiasGrid_->getValue(t);
    2182      920402 :     Z_0+=std::exp(minusBetaF*(val-max_bias_));
    2183      920402 :     Z_V+=std::exp(minusBetaFplusV*(val-max_bias_));
    2184             :   }
    2185         102 :   comm.Sum(Z_0);
    2186         102 :   comm.Sum(Z_V);
    2187             : 
    2188         102 :   reweight_factor_=kbt_*std::log(Z_0/Z_V)+max_bias_;
    2189         204 :   getPntrToComponent("rct")->set(reweight_factor_);
    2190             : }
    2191             : 
    2192         273 : double MetaD::getTransitionBarrierBias()
    2193             : {
    2194             :   // If there is only one well of interest, return the bias at that well point.
    2195         273 :   if (transitionwells_.size() == 1) {
    2196           0 :     double tb_bias = getBias(transitionwells_[0]);
    2197           0 :     return tb_bias;
    2198             : 
    2199             :     // Otherwise, check for the least barrier bias between all pairs of wells.
    2200             :     // Note that because the paths can be considered edges between the wells' nodes
    2201             :     // to make a graph and the path barriers satisfy certain cycle inequalities, it
    2202             :     // is sufficient to look at paths corresponding to a minimal spanning tree of the
    2203             :     // overall graph rather than examining every edge in the graph.
    2204             :     // For simplicity, I chose the star graph with center well 0 as the spanning tree.
    2205             :     // It is most efficient to start the path searches from the wells that are
    2206             :     // expected to be sampled last, so transitionwell_[0] should correspond to the
    2207             :     // starting well. With this choice the searches will terminate in one step until
    2208             :     // transitionwell_[1] is sampled.
    2209             :   } else {
    2210             :     double least_transition_bias;
    2211         273 :     std::vector<double> sink = transitionwells_[0];
    2212         273 :     std::vector<double> source = transitionwells_[1];
    2213         273 :     least_transition_bias = BiasGrid_->findMaximalPathMinimum(source, sink);
    2214         273 :     for (unsigned i = 2; i < transitionwells_.size(); i++) {
    2215           0 :       if (least_transition_bias == 0.0) {
    2216             :         break;
    2217             :       }
    2218           0 :       source = transitionwells_[i];
    2219           0 :       double curr_transition_bias = BiasGrid_->findMaximalPathMinimum(source, sink);
    2220           0 :       least_transition_bias = fmin(curr_transition_bias, least_transition_bias);
    2221             :     }
    2222             :     return least_transition_bias;
    2223             :   }
    2224             : }
    2225             : 
    2226         154 : void MetaD::updateFrequencyAdaptiveStride()
    2227             : {
    2228         154 :   plumed_massert(freq_adaptive_,"should only be used if frequency adaptive metadynamics is enabled");
    2229         154 :   plumed_massert(acceleration_,"frequency adaptive metadynamics can only be used if the acceleration factor is calculated");
    2230         154 :   const double mean_acc = acc_/((double) getStep());
    2231         154 :   int tmp_stride= stride_*floor((mean_acc/fa_min_acceleration_)+0.5);
    2232         154 :   if(mean_acc >= fa_min_acceleration_) {
    2233         129 :     if(tmp_stride > current_stride_) {current_stride_ = tmp_stride;}
    2234             :   }
    2235         154 :   if(fa_max_stride_!=0 && current_stride_>fa_max_stride_) {
    2236           0 :     current_stride_=fa_max_stride_;
    2237             :   }
    2238         154 :   getPntrToComponent("pace")->set(current_stride_);
    2239         154 : }
    2240             : 
    2241        8435 : bool MetaD::checkNeedsGradients()const
    2242             : {
    2243        8435 :   if(adaptive_==FlexibleBin::geometry) {
    2244         192 :     if(getStep()%stride_==0 && !isFirstStep_) return true;
    2245         109 :     else return false;
    2246             :   } else return false;
    2247             : }
    2248             : 
    2249           4 : void MetaD::updateNlist()
    2250             : {
    2251             :   // no need to check for neighbors
    2252           4 :   if(hills_.size()==0) return;
    2253             : 
    2254             :   // here we generate the neighbor list
    2255           4 :   nlist_hills_.clear();
    2256             :   std::vector<Gaussian> local_flat_nl;
    2257           4 :   unsigned nt=OpenMP::getNumThreads();
    2258           4 :   if(hills_.size()<2*nt) nt=1;
    2259           4 :   #pragma omp parallel num_threads(nt)
    2260             :   {
    2261             :     std::vector<Gaussian> private_flat_nl;
    2262             :     #pragma omp for nowait
    2263             :     for(unsigned k=0; k<hills_.size(); k++)
    2264             :     {
    2265             :       double dist2=0;
    2266             :       for(unsigned i=0; i<getNumberOfArguments(); i++)
    2267             :       {
    2268             :         const double d=difference(i,getArgument(i),hills_[k].center[i])/hills_[k].sigma[i];
    2269             :         dist2+=d*d;
    2270             :       }
    2271             :       if(dist2<=nlist_param_[0]*dp2cutoff) private_flat_nl.push_back(hills_[k]);
    2272             :     }
    2273             :     #pragma omp critical
    2274             :     local_flat_nl.insert(local_flat_nl.end(), private_flat_nl.begin(), private_flat_nl.end());
    2275             :   }
    2276           4 :   nlist_hills_ = local_flat_nl;
    2277             : 
    2278             :   // here we set some properties that are used to decide when to update it again
    2279          12 :   for(unsigned i=0; i<getNumberOfArguments(); i++) nlist_center_[i]=getArgument(i);
    2280             :   std::vector<double> dev2;
    2281           4 :   dev2.resize(getNumberOfArguments(),0);
    2282          46 :   for(unsigned k=0; k<nlist_hills_.size(); k++)
    2283             :   {
    2284         126 :     for(unsigned i=0; i<getNumberOfArguments(); i++)
    2285             :     {
    2286          84 :       const double d=difference(i,getArgument(i),nlist_hills_[k].center[i]);
    2287          84 :       dev2[i]+=d*d;
    2288             :     }
    2289             :   }
    2290          12 :   for(unsigned i=0; i<getNumberOfArguments(); i++) {
    2291           8 :     if(dev2[i]>0.) nlist_dev2_[i]=dev2[i]/static_cast<double>(nlist_hills_.size());
    2292           0 :     else nlist_dev2_[i]=hills_.back().sigma[i]*hills_.back().sigma[i];
    2293             :   }
    2294             : 
    2295             :   // we are done
    2296           4 :   getPntrToComponent("nlker")->set(nlist_hills_.size());
    2297           4 :   getPntrToComponent("nlsteps")->set(nlist_steps_);
    2298           4 :   nlist_steps_=0;
    2299           4 :   nlist_update_=false;
    2300           4 : }
    2301             : 
    2302             : }
    2303             : }

Generated by: LCOV version 1.16