LCOV - code coverage report
Current view: top level - bias - MetaD.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 1067 1259 84.7 %
Date: 2025-03-25 09:33:27 Functions: 26 28 92.9 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2011-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "Bias.h"
      23             : #include "core/ActionRegister.h"
      24             : #include "core/ActionSet.h"
      25             : #include "core/PlumedMain.h"
      26             : #include "core/FlexibleBin.h"
      27             : #include "tools/Exception.h"
      28             : #include "tools/Grid.h"
      29             : #include "tools/Matrix.h"
      30             : #include "tools/OpenMP.h"
      31             : #include "tools/Random.h"
      32             : #include "tools/File.h"
      33             : #include "tools/Communicator.h"
      34             : #include <ctime>
      35             : #include <numeric>
      36             : 
      37             : namespace PLMD {
      38             : namespace bias {
      39             : 
      40             : //+PLUMEDOC BIAS METAD
      41             : /*
      42             : Used to performed metadynamics on one or more collective variables.
      43             : 
      44             : In a metadynamics simulations a history dependent bias composed of
      45             : intermittently added Gaussian functions is added to the potential \cite metad.
      46             : 
      47             : \f[
      48             : V(\vec{s},t) = \sum_{ k \tau < t} W(k \tau)
      49             : \exp\left(
      50             : -\sum_{i=1}^{d} \frac{(s_i-s_i^{(0)}(k \tau))^2}{2\sigma_i^2}
      51             : \right).
      52             : \f]
      53             : 
      54             : This potential forces the system away from the kinetic traps in the potential energy surface
      55             : and out into the unexplored parts of the energy landscape. Information on the Gaussian
      56             : functions from which this potential is composed is output to a file called HILLS, which
      57             : is used both the restart the calculation and to reconstruct the free energy as a function of the CVs.
      58             : The free energy can be reconstructed from a metadynamics calculation because the final bias is given
      59             : by:
      60             : 
      61             : \f[
      62             : V(\vec{s}) = -F(\vec{s})
      63             : \f]
      64             : 
      65             : During post processing the free energy can be calculated in this way using the \ref sum_hills
      66             : utility.
      67             : 
      68             : In the simplest possible implementation of a metadynamics calculation the expense of a metadynamics
      69             : calculation increases with the length of the simulation as one has to, at every step, evaluate
      70             : the values of a larger and larger number of Gaussian kernels. To avoid this issue you can
      71             : store the bias on a grid.  This approach is similar to that proposed in \cite babi08jcp but has the
      72             : advantage that the grid spacing is independent on the Gaussian width.
      73             : Notice that you should provide the grid boundaries (GRID_MIN and GRID_MAX) and either the number of bins
      74             : for every collective variable (GRID_BIN) or the desired grid spacing (GRID_SPACING).
      75             : In case you provide both PLUMED will use the most conservative choice (highest number of bins) for each dimension.
      76             : In case you do not provide any information about bin size (neither GRID_BIN nor GRID_SPACING)
      77             : PLUMED will use 1/5 of the Gaussian width (SIGMA) as grid spacing if the width is fixed or 1/5 of the minimum
      78             : Gaussian width (SIGMA_MIN) if the width is variable. This default choice should be reasonable for most applications.
      79             : 
      80             : Alternatively to the use of grids, it is possible to use a neighbor list to decrease the cost of evaluating the bias,
      81             : this can be enabled using NLIST. NLIST can be beneficial with more than 2 collective variables, where GRID becomes
      82             : expensive and memory consuming. The neighbor list will be updated everytime the CVs go farther than a cut-off value
      83             : from the position they were at last neighbor list update. Gaussians are added to the neigbhor list if their center
      84             : is within 6.*DP2CUTOFF*sigma*sigma. While the list is updated if the CVs are farther from the center than 0.5 of the
      85             : standard deviation of the Gaussian center distribution of the list. These parameters (6 and 0.5) can be modified using
      86             : NLIST_PARAMETERS. Note that the use of neighbor list does not provide the exact bias.
      87             : 
      88             : Metadynamics can be restarted either from a HILLS file as well as from a GRID, in this second
      89             : case one can first save a GRID using GRID_WFILE (and GRID_WSTRIDE) and at a later stage read
      90             : it using GRID_RFILE.
      91             : 
      92             : The work performed by the METAD bias can be calculated using CALC_WORK, note that this is expensive when not using grids.
      93             : 
      94             : Another option that is available in plumed is well-tempered metadynamics \cite Barducci:2008. In this
      95             : variant of metadynamics the heights of the Gaussian hills are scaled at each step so the bias is now
      96             : given by:
      97             : 
      98             : \f[
      99             : V({s},t)= \sum_{t'=0,\tau_G,2\tau_G,\dots}^{t'<t} W e^{-V({s}({q}(t'),t')/\Delta T} \exp\left(
     100             : -\sum_{i=1}^{d} \frac{(s_i({q})-s_i({q}(t'))^2}{2\sigma_i^2}
     101             : \right),
     102             : \f]
     103             : 
     104             : This method ensures that the bias converges more smoothly. It should be noted that, in the case of well-tempered metadynamics, in
     105             : the output printed the Gaussian height is re-scaled using the bias factor.
     106             : Also notice that with well-tempered metadynamics the HILLS file does not contain the bias,
     107             : but the negative of the free-energy estimate. This choice has the advantage that
     108             : one can restart a simulation using a different value for the \f$\Delta T\f$. The applied bias will be scaled accordingly.
     109             : 
     110             : Note that you can use here also the flexible Gaussian approach  \cite Branduardi:2012dl
     111             : in which you can adapt the Gaussian to the extent of Cartesian space covered by a variable or
     112             : to the space in collective variable covered in a given time. In this case the width of the deposited
     113             : Gaussian potential is denoted by one value only that is a Cartesian space (ADAPTIVE=GEOM) or a time
     114             : (ADAPTIVE=DIFF). Note that a specific integration technique for the deposited Gaussian kernels
     115             : should be used in this case. Check the documentation for utility sum_hills.
     116             : 
     117             : With the keyword INTERVAL one changes the metadynamics algorithm setting the bias force equal to zero
     118             : outside boundary \cite baftizadeh2012protein. If, for example, metadynamics is performed on a CV s and one is interested only
     119             : to the free energy for s > boundary, the history dependent potential is still updated according to the above
     120             : equations but the metadynamics force is set to zero for s < boundary. Notice that Gaussian kernels are added also
     121             : if s < boundary, as the tails of these Gaussian kernels influence VG in the relevant region s > boundary. In this way, the
     122             : force on the system in the region s > boundary comes from both metadynamics and the force field, in the region
     123             : s < boundary only from the latter. This approach allows obtaining a history-dependent bias potential VG that
     124             : fluctuates around a stable estimator, equal to the negative of the free energy far enough from the
     125             : boundaries. Note that:
     126             : - It works only for one-dimensional biases;
     127             : - It works both with and without GRID;
     128             : - The interval limit boundary in a region where the free energy derivative is not large;
     129             : - If in the region outside the limit boundary the system has a free energy minimum, the INTERVAL keyword should
     130             :   be used together with a \ref UPPER_WALLS or \ref LOWER_WALLS at boundary.
     131             : 
     132             : As a final note, since version 2.0.2 when the system is outside of the selected interval the force
     133             : is set to zero and the bias value to the value at the corresponding boundary. This allows acceptances
     134             : for replica exchange methods to be computed correctly.
     135             : 
     136             : Multiple walkers  \cite multiplewalkers can also be used. See below the examples.
     137             : 
     138             : 
     139             : The \f$c(t)\f$ reweighting factor can also be calculated on the fly using the equations
     140             : presented in \cite Tiwary_jp504920s.
     141             : The expression used to calculate \f$c(t)\f$ follows directly from Eq. 3 in \cite Tiwary_jp504920s,
     142             : where \f$F(\vec{s})=-\gamma/(\gamma-1) V(\vec{s})\f$.
     143             : This gives smoother results than equivalent Eqs. 13 and Eqs. 14 in that paper.
     144             : The \f$c(t)\f$ is given by the rct component while the bias
     145             : normalized by \f$c(t)\f$ is given by the rbias component (rbias=bias-rct) which can be used
     146             : to obtain a reweighted histogram.
     147             : The calculation of \f$c(t)\f$ is enabled by using the keyword CALC_RCT.
     148             : By default \f$c(t)\f$ is updated every time the bias changes, but if this slows down the simulation
     149             : the keyword RCT_USTRIDE can be set to a value higher than 1.
     150             : This option requires that a grid is used.
     151             : 
     152             : Additional material and examples can be also found in the tutorials:
     153             : 
     154             : - \ref lugano-3
     155             : 
     156             : Concurrent metadynamics
     157             : as done e.g. in Ref. \cite gil2015enhanced . This indeed can be obtained by using the METAD
     158             : action multiple times in the same input file.
     159             : 
     160             : \par Examples
     161             : 
     162             : The following input is for a standard metadynamics calculation using as
     163             : collective variables the distance between atoms 3 and 5
     164             : and the distance between atoms 2 and 4. The value of the CVs and
     165             : the metadynamics bias potential are written to the COLVAR file every 100 steps.
     166             : \plumedfile
     167             : DISTANCE ATOMS=3,5 LABEL=d1
     168             : DISTANCE ATOMS=2,4 LABEL=d2
     169             : METAD ARG=d1,d2 SIGMA=0.2,0.2 HEIGHT=0.3 PACE=500 LABEL=restraint
     170             : PRINT ARG=d1,d2,restraint.bias STRIDE=100  FILE=COLVAR
     171             : \endplumedfile
     172             : (See also \ref DISTANCE \ref PRINT).
     173             : 
     174             : \par
     175             : If you use adaptive Gaussian kernels, with diffusion scheme where you use
     176             : a Gaussian that should cover the space of 20 time steps in collective variables.
     177             : Note that in this case the histogram correction is needed when summing up hills.
     178             : \plumedfile
     179             : DISTANCE ATOMS=3,5 LABEL=d1
     180             : DISTANCE ATOMS=2,4 LABEL=d2
     181             : METAD ARG=d1,d2 SIGMA=20 HEIGHT=0.3 PACE=500 LABEL=restraint ADAPTIVE=DIFF
     182             : PRINT ARG=d1,d2,restraint.bias STRIDE=100  FILE=COLVAR
     183             : \endplumedfile
     184             : 
     185             : \par
     186             : If you use adaptive Gaussian kernels, with geometrical scheme where you use
     187             : a Gaussian that should cover the space of 0.05 nm in Cartesian space.
     188             : Note that in this case the histogram correction is needed when summing up hills.
     189             : \plumedfile
     190             : DISTANCE ATOMS=3,5 LABEL=d1
     191             : DISTANCE ATOMS=2,4 LABEL=d2
     192             : METAD ARG=d1,d2 SIGMA=0.05 HEIGHT=0.3 PACE=500 LABEL=restraint ADAPTIVE=GEOM
     193             : PRINT ARG=d1,d2,restraint.bias STRIDE=100  FILE=COLVAR
     194             : \endplumedfile
     195             : 
     196             : \par
     197             : When using adaptive Gaussian kernels you might want to limit how the hills width can change.
     198             : You can use SIGMA_MIN and SIGMA_MAX keywords.
     199             : The sigmas should specified in terms of CV so you should use the CV units.
     200             : Note that if you use a negative number, this means that the limit is not set.
     201             : Note also that in this case the histogram correction is needed when summing up hills.
     202             : \plumedfile
     203             : DISTANCE ATOMS=3,5 LABEL=d1
     204             : DISTANCE ATOMS=2,4 LABEL=d2
     205             : METAD ...
     206             :   ARG=d1,d2 SIGMA=0.05 HEIGHT=0.3 PACE=500 LABEL=restraint ADAPTIVE=GEOM
     207             :   SIGMA_MIN=0.2,0.1 SIGMA_MAX=0.5,1.0
     208             : ... METAD
     209             : PRINT ARG=d1,d2,restraint.bias STRIDE=100  FILE=COLVAR
     210             : \endplumedfile
     211             : 
     212             : \par
     213             : Multiple walkers can be also use as in  \cite multiplewalkers
     214             : These are enabled by setting the number of walker used, the id of the
     215             : current walker which interprets the input file, the directory where the
     216             : hills containing files resides, and the frequency to read the other walkers.
     217             : Here is an example
     218             : \plumedfile
     219             : DISTANCE ATOMS=3,5 LABEL=d1
     220             : METAD ...
     221             :    ARG=d1 SIGMA=0.05 HEIGHT=0.3 PACE=500 LABEL=restraint
     222             :    WALKERS_N=10
     223             :    WALKERS_ID=3
     224             :    WALKERS_DIR=../
     225             :    WALKERS_RSTRIDE=100
     226             : ... METAD
     227             : \endplumedfile
     228             : where  WALKERS_N is the total number of walkers, WALKERS_ID is the
     229             : id of the present walker (starting from 0 ) and the WALKERS_DIR is the directory
     230             : where all the walkers are located. WALKERS_RSTRIDE is the number of step between
     231             : one update and the other. Since version 2.2.5, hills files are automatically
     232             : flushed every WALKERS_RSTRIDE steps.
     233             : 
     234             : \par
     235             : The \f$c(t)\f$ reweighting factor can be calculated on the fly using the equations
     236             : presented in \cite Tiwary_jp504920s as described above.
     237             : This is enabled by using the keyword CALC_RCT,
     238             : and can be done only if the bias is defined on a grid.
     239             : \plumedfile
     240             : phi: TORSION ATOMS=1,2,3,4
     241             : psi: TORSION ATOMS=5,6,7,8
     242             : 
     243             : METAD ...
     244             :  LABEL=metad
     245             :  ARG=phi,psi SIGMA=0.20,0.20 HEIGHT=1.20 BIASFACTOR=5 TEMP=300.0 PACE=500
     246             :  GRID_MIN=-pi,-pi GRID_MAX=pi,pi GRID_BIN=150,150
     247             :  CALC_RCT
     248             :  RCT_USTRIDE=10
     249             : ... METAD
     250             : \endplumedfile
     251             : Here we have asked that the calculation is performed every 10 hills deposition by using
     252             : RCT_USTRIDE keyword. If this keyword is not given, the calculation will
     253             : by default be performed every time the bias changes. The \f$c(t)\f$ reweighting factor will be given
     254             : in the rct component while the instantaneous value of the bias potential
     255             : normalized using the \f$c(t)\f$ reweighting factor is given in the rbias component
     256             : [rbias=bias-rct] which can be used to obtain a reweighted histogram or
     257             : free energy surface using the \ref HISTOGRAM analysis.
     258             : 
     259             : \par
     260             : The kinetics of the transitions between basins can also be analyzed on the fly as
     261             : in \cite PRL230602. The flag ACCELERATION turn on accumulation of the acceleration
     262             : factor that can then be used to determine the rate. This method can be used together
     263             : with \ref COMMITTOR analysis to stop the simulation when the system get to the target basin.
     264             : It must be used together with Well-Tempered Metadynamics. If restarting from a previous
     265             : metadynamics you need to use the ACCELERATION_RFILE keyword to give the name of the
     266             : data file from which the previous value of the acceleration factor should be read, otherwise the
     267             : calculation of the acceleration factor will be wrong.
     268             : 
     269             : \par
     270             : By using the flag FREQUENCY_ADAPTIVE the frequency adaptive scheme introduced in \cite Wang-JCP-2018
     271             : is turned on. The frequency for hill addition then changes dynamically based on the acceleration factor
     272             : according to the following equation
     273             : \f[
     274             : \tau_{\mathrm{dep}}(t) =
     275             : \min\left[
     276             : \tau_0 \cdot
     277             : \max\left[\frac{\alpha(t)}{\theta},1\right]
     278             : ,\tau_{c}
     279             : \right]
     280             : \f]
     281             : where \f$\tau_0\f$ is the initial hill addition frequency given by the PACE keyword,
     282             : \f$\tau_{c}\f$ is the maximum allowed frequency given by the FA_MAX_PACE keyword,
     283             : \f$\alpha(t)\f$ is the instantaneous acceleration factor at time \f$t\f$,
     284             : and \f$\theta\f$ is a threshold value that acceleration factor has to reach before
     285             : triggering a change in the hill addition frequency given by the FA_MIN_ACCELERATION keyword.
     286             : The frequency for updating the hill addition frequency according to this equation is
     287             : given by the FA_UPDATE_FREQUENCY keyword, by default it is the same as the value given
     288             : in PACE. The hill hill addition frequency increase monotonously such that if the
     289             : instantaneous acceleration factor is lower than in the previous updating step the
     290             : previous \f$\tau_{\mathrm{dep}}\f$ is kept rather than updating it to a lower value.
     291             : The instantaneous hill addition frequency \f$\tau_{\mathrm{dep}}(t)\f$ is outputted
     292             : to pace component. Note that if restarting from a previous metadynamics run you need to
     293             : use the ACCELERATION_RFILE keyword to read in the acceleration factors from the
     294             : previous run, otherwise the hill addition frequency will start from the initial
     295             : frequency.
     296             : 
     297             : 
     298             : \par
     299             : You can also provide a target distribution using the keyword TARGET
     300             : \cite white2015designing
     301             : \cite marinelli2015ensemble
     302             : \cite gil2016empirical
     303             : The TARGET should be a grid containing a free-energy (i.e. the -\f$k_B\f$T*log of the desired target distribution).
     304             : Gaussian kernels will then be scaled by a factor
     305             : \f[
     306             : e^{\beta(\tilde{F}(s)-\tilde{F}_{max})}
     307             : \f]
     308             : Here \f$\tilde{F}(s)\f$ is the free energy defined on the grid and \f$\tilde{F}_{max}\f$ its maximum value.
     309             : Notice that we here used the maximum value as in ref \cite gil2016empirical
     310             : This choice allows to avoid exceedingly large Gaussian kernels to be added. However,
     311             : it could make the Gaussian too small. You should always choose carefully the HEIGHT parameter
     312             : in this case.
     313             : The grid file should be similar to other PLUMED grid files in that it should contain
     314             : both the target free-energy and its derivatives.
     315             : 
     316             : Notice that if you wish your simulation to converge to the target free energy you should use
     317             : the DAMPFACTOR command to provide a global tempering \cite dama2014well
     318             : Alternatively, if you use a BIASFACTOR your simulation will converge to a free
     319             : energy that is a linear combination of the target free energy and of the intrinsic free energy
     320             : determined by the original force field.
     321             : 
     322             : \plumedfile
     323             : DISTANCE ATOMS=3,5 LABEL=d1
     324             : METAD ...
     325             :  LABEL=t1
     326             :  ARG=d1 SIGMA=0.05 TAU=200 DAMPFACTOR=100 PACE=250
     327             :  GRID_MIN=1.14 GRID_MAX=1.32 GRID_BIN=6
     328             :  TARGET=dist.grid
     329             : ... METAD
     330             : 
     331             : PRINT ARG=d1,t1.bias STRIDE=100 FILE=COLVAR
     332             : \endplumedfile
     333             : 
     334             : The file dist.dat for this calculation would read:
     335             : 
     336             : \auxfile{dist.grid}
     337             : #! FIELDS d1 t1.target der_d1
     338             : #! SET min_d1 1.14
     339             : #! SET max_d1 1.32
     340             : #! SET nbins_d1  6
     341             : #! SET periodic_d1 false
     342             :    1.1400   0.0031   0.1101
     343             :    1.1700   0.0086   0.2842
     344             :    1.2000   0.0222   0.6648
     345             :    1.2300   0.0521   1.4068
     346             :    1.2600   0.1120   2.6873
     347             :    1.2900   0.2199   4.6183
     348             :    1.3200   0.3948   7.1055
     349             : \endauxfile
     350             : 
     351             : Notice that BIASFACTOR can also be chosen as equal to 1. In this case one will perform
     352             : unbiased sampling. Instead of using HEIGHT, one should provide the TAU parameter.
     353             : \plumedfile
     354             : d: DISTANCE ATOMS=3,5
     355             : METAD ARG=d SIGMA=0.1 TAU=4.0 TEMP=300 PACE=100 BIASFACTOR=1.0
     356             : \endplumedfile
     357             : The HILLS file obtained will still work with `plumed sum_hills` so as to plot a free-energy.
     358             : The case where this makes sense is probably that of RECT simulations.
     359             : 
     360             : Regarding RECT simulations, you can also use the RECT keyword so as to avoid using multiple input files.
     361             : For instance, a single input file will be
     362             : \plumedfile
     363             : d: DISTANCE ATOMS=3,5
     364             : METAD ARG=d SIGMA=0.1 TAU=4.0 TEMP=300 PACE=100 RECT=1.0,1.5,2.0,3.0
     365             : \endplumedfile
     366             : The number of elements in the RECT array should be equal to the number of replicas.
     367             : 
     368             : */
     369             : //+ENDPLUMEDOC
     370             : 
     371             : class MetaD : public Bias {
     372             : 
     373             : private:
     374             :   struct Gaussian {
     375             :     bool   multivariate; // this is required to discriminate the one dimensional case
     376             :     double height;
     377             :     std::vector<double> center;
     378             :     std::vector<double> sigma;
     379             :     std::vector<double> invsigma;
     380        5622 :     Gaussian(const bool m, const double h, const std::vector<double>& c, const std::vector<double>& s):
     381        5622 :       multivariate(m),height(h),center(c),sigma(s),invsigma(s) {
     382             :       // to avoid troubles from zero element in flexible hills
     383       16403 :       for(unsigned i=0; i<invsigma.size(); ++i) {
     384       10781 :         if(std::abs(invsigma[i])>1.e-20) {
     385       10781 :           invsigma[i]=1.0/invsigma[i] ;
     386             :         } else {
     387           0 :           invsigma[i]=0.0;
     388             :         }
     389             :       }
     390        5622 :     }
     391             :   };
     392           8 :   struct TemperingSpecs {
     393             :     bool is_active;
     394             :     std::string name_stem;
     395             :     std::string name;
     396             :     double biasf;
     397             :     double threshold;
     398             :     double alpha;
     399         156 :     inline TemperingSpecs(bool is_active, const std::string &name_stem, const std::string &name, double biasf, double threshold, double alpha) :
     400         156 :       is_active(is_active), name_stem(name_stem), name(name), biasf(biasf), threshold(threshold), alpha(alpha)
     401         156 :     {}
     402             :   };
     403             :   // general setup
     404             :   double kbt_;
     405             :   int stride_;
     406             :   bool calc_work_;
     407             :   // well-tempered MetaD
     408             :   bool welltemp_;
     409             :   double biasf_;
     410             :   // output files format
     411             :   std::string fmt_;
     412             :   // first step?
     413             :   bool isFirstStep_;
     414             :   // Gaussian starting parameters
     415             :   double height0_;
     416             :   std::vector<double> sigma0_;
     417             :   std::vector<double> sigma0min_;
     418             :   std::vector<double> sigma0max_;
     419             :   // Gaussians
     420             :   std::vector<Gaussian> hills_;
     421             :   std::unique_ptr<FlexibleBin> flexbin_;
     422             :   int adaptive_;
     423             :   OFile hillsOfile_;
     424             :   std::vector<std::unique_ptr<IFile>> ifiles_;
     425             :   std::vector<std::string> ifilesnames_;
     426             :   // Grids
     427             :   bool grid_;
     428             :   std::unique_ptr<GridBase> BiasGrid_;
     429             :   OFile gridfile_;
     430             :   bool storeOldGrids_;
     431             :   int wgridstride_;
     432             :   // multiple walkers
     433             :   int mw_n_;
     434             :   std::string mw_dir_;
     435             :   int mw_id_;
     436             :   int mw_rstride_;
     437             :   bool walkers_mpi_;
     438             :   unsigned mpi_nw_;
     439             :   // flying gaussians
     440             :   bool flying_;
     441             :   // kinetics from metadynamics
     442             :   bool acceleration_;
     443             :   double acc_;
     444             :   double acc_restart_mean_;
     445             :   // transition-tempering metadynamics
     446             :   bool calc_max_bias_;
     447             :   double max_bias_;
     448             :   bool calc_transition_bias_;
     449             :   double transition_bias_;
     450             :   std::vector<std::vector<double> > transitionwells_;
     451             :   static const size_t n_tempering_options_ = 1;
     452             :   static const std::string tempering_names_[1][2];
     453             :   double dampfactor_;
     454             :   struct TemperingSpecs tt_specs_;
     455             :   std::string targetfilename_;
     456             :   std::unique_ptr<GridBase> TargetGrid_;
     457             :   // frequency adaptive metadynamics
     458             :   int current_stride_;
     459             :   bool freq_adaptive_;
     460             :   int fa_update_frequency_;
     461             :   int fa_max_stride_;
     462             :   double fa_min_acceleration_;
     463             :   // intervals
     464             :   double uppI_;
     465             :   double lowI_;
     466             :   bool doInt_;
     467             :   // reweighting
     468             :   bool calc_rct_;
     469             :   double reweight_factor_;
     470             :   unsigned rct_ustride_;
     471             :   // work
     472             :   double work_;
     473             :   // neighbour list stuff
     474             :   bool nlist_;
     475             :   bool nlist_update_;
     476             :   unsigned nlist_steps_;
     477             :   std::array<double,2> nlist_param_;
     478             :   std::vector<Gaussian> nlist_hills_;
     479             :   std::vector<double> nlist_center_;
     480             :   std::vector<double> nlist_dev2_;
     481             : 
     482             :   double stretchA=1.0;
     483             :   double stretchB=0.0;
     484             : 
     485             :   bool noStretchWarningDone=false;
     486             : 
     487          12 :   void noStretchWarning() {
     488          12 :     if(!noStretchWarningDone) {
     489           3 :       log<<"\nWARNING: you are using a HILLS file with Gaussian kernels, PLUMED 2.8 uses stretched Gaussians by default\n";
     490             :     }
     491          12 :     noStretchWarningDone=true;
     492          12 :   }
     493             : 
     494             :   static void registerTemperingKeywords(const std::string &name_stem, const std::string &name, Keywords &keys);
     495             :   void   readTemperingSpecs(TemperingSpecs &t_specs);
     496             :   void   logTemperingSpecs(const TemperingSpecs &t_specs);
     497             :   void   readGaussians(IFile*);
     498             :   void   writeGaussian(const Gaussian&,OFile&);
     499             :   void   addGaussian(const Gaussian&);
     500             :   double getHeight(const std::vector<double>&);
     501             :   void   temperHeight(double &height, const TemperingSpecs &t_specs, const double tempering_bias);
     502             :   double getBias(const std::vector<double>&);
     503             :   double getBiasAndDerivatives(const std::vector<double>&, std::vector<double>&);
     504             :   double evaluateGaussian(const std::vector<double>&, const Gaussian&);
     505             :   double evaluateGaussianAndDerivatives(const std::vector<double>&, const Gaussian&,std::vector<double>&,std::vector<double>&);
     506             :   double getGaussianNormalization(const Gaussian&);
     507             :   std::vector<unsigned> getGaussianSupport(const Gaussian&);
     508             :   bool   scanOneHill(IFile* ifile, std::vector<Value>& v, std::vector<double>& center, std::vector<double>& sigma, double& height, bool& multivariate);
     509             :   void   computeReweightingFactor();
     510             :   double getTransitionBarrierBias();
     511             :   void   updateFrequencyAdaptiveStride();
     512             :   void   updateNlist();
     513             : 
     514             : public:
     515             :   explicit MetaD(const ActionOptions&);
     516             :   void calculate() override;
     517             :   void update() override;
     518             :   static void registerKeywords(Keywords& keys);
     519             :   bool checkNeedsGradients()const override;
     520             : };
     521             : 
     522             : PLUMED_REGISTER_ACTION(MetaD,"METAD")
     523             : 
     524         159 : void MetaD::registerKeywords(Keywords& keys) {
     525         159 :   Bias::registerKeywords(keys);
     526         318 :   keys.addOutputComponent("rbias","CALC_RCT","scalar","the instantaneous value of the bias normalized using the c(t) reweighting factor [rbias=bias-rct]."
     527             :                           "This component can be used to obtain a reweighted histogram.");
     528         318 :   keys.addOutputComponent("rct","CALC_RCT","scalar","the reweighting factor c(t).");
     529         318 :   keys.addOutputComponent("work","CALC_WORK","scalar","accumulator for work");
     530         318 :   keys.addOutputComponent("acc","ACCELERATION","scalar","the metadynamics acceleration factor");
     531         318 :   keys.addOutputComponent("maxbias", "CALC_MAX_BIAS", "scalar","the maximum of the metadynamics V(s, t)");
     532         318 :   keys.addOutputComponent("transbias", "CALC_TRANSITION_BIAS", "scalar","the metadynamics transition bias V*(t)");
     533         318 :   keys.addOutputComponent("pace","FREQUENCY_ADAPTIVE","scalar","the hill addition frequency when employing frequency adaptive metadynamics");
     534         318 :   keys.addOutputComponent("nlker","NLIST","scalar","number of hills in the neighbor list");
     535         318 :   keys.addOutputComponent("nlsteps","NLIST","scalar","number of steps from last neighbor list update");
     536         159 :   keys.add("compulsory","SIGMA","the widths of the Gaussian hills");
     537         159 :   keys.add("compulsory","PACE","the frequency for hill addition");
     538         159 :   keys.add("compulsory","FILE","HILLS","a file in which the list of added hills is stored");
     539         159 :   keys.add("optional","HEIGHT","the heights of the Gaussian hills. Compulsory unless TAU and either BIASFACTOR or DAMPFACTOR are given");
     540         159 :   keys.add("optional","FMT","specify format for HILLS files (useful for decrease the number of digits in regtests)");
     541         159 :   keys.add("optional","BIASFACTOR","use well tempered metadynamics and use this bias factor.  Please note you must also specify temp");
     542         159 :   keys.addFlag("CALC_WORK",false,"calculate the total accumulated work done by the bias since last restart");
     543         159 :   keys.add("optional","RECT","list of bias factors for all the replicas");
     544         159 :   keys.add("optional","DAMPFACTOR","damp hills with exp(-max(V)/(kT*DAMPFACTOR)");
     545         318 :   for (size_t i = 0; i < n_tempering_options_; i++) {
     546         159 :     registerTemperingKeywords(tempering_names_[i][0], tempering_names_[i][1], keys);
     547             :   }
     548         159 :   keys.add("optional","TARGET","target to a predefined distribution");
     549         159 :   keys.add("optional","TEMP","the system temperature - this is only needed if you are doing well-tempered metadynamics");
     550         159 :   keys.add("optional","TAU","in well tempered metadynamics, sets height to (k_B Delta T*pace*timestep)/tau");
     551         159 :   keys.addFlag("CALC_RCT",false,"calculate the c(t) reweighting factor and use that to obtain the normalized bias [rbias=bias-rct]."
     552             :                "This method is not compatible with metadynamics not on a grid.");
     553         159 :   keys.add("optional","RCT_USTRIDE","the update stride for calculating the c(t) reweighting factor."
     554             :            "The default 1, so c(t) is updated every time the bias is updated.");
     555         159 :   keys.add("optional","GRID_MIN","the lower bounds for the grid");
     556         159 :   keys.add("optional","GRID_MAX","the upper bounds for the grid");
     557         159 :   keys.add("optional","GRID_BIN","the number of bins for the grid");
     558         159 :   keys.add("optional","GRID_SPACING","the approximate grid spacing (to be used as an alternative or together with GRID_BIN)");
     559         159 :   keys.addFlag("GRID_SPARSE",false,"use a sparse grid to store hills");
     560         159 :   keys.addFlag("GRID_NOSPLINE",false,"don't use spline interpolation with grids");
     561         159 :   keys.add("optional","GRID_WSTRIDE","write the grid to a file every N steps");
     562         159 :   keys.add("optional","GRID_WFILE","the file on which to write the grid");
     563         159 :   keys.add("optional","GRID_RFILE","a grid file from which the bias should be read at the initial step of the simulation");
     564         159 :   keys.addFlag("STORE_GRIDS",false,"store all the grid files the calculation generates. They will be deleted if this keyword is not present");
     565         159 :   keys.addFlag("NLIST",false,"Use neighbor list for kernels summation, faster but experimental");
     566         159 :   keys.add("optional", "NLIST_PARAMETERS","(default=6.,0.5) the two cutoff parameters for the Gaussians neighbor list");
     567         159 :   keys.add("optional","ADAPTIVE","use a geometric (=GEOM) or diffusion (=DIFF) based hills width scheme. Sigma is one number that has distance units or time step dimensions");
     568         159 :   keys.add("optional","SIGMA_MAX","the upper bounds for the sigmas (in CV units) when using adaptive hills. Negative number means no bounds ");
     569         159 :   keys.add("optional","SIGMA_MIN","the lower bounds for the sigmas (in CV units) when using adaptive hills. Negative number means no bounds ");
     570         159 :   keys.add("optional","WALKERS_ID", "walker id");
     571         159 :   keys.add("optional","WALKERS_N", "number of walkers");
     572         159 :   keys.add("optional","WALKERS_DIR", "shared directory with the hills files from all the walkers");
     573         159 :   keys.add("optional","WALKERS_RSTRIDE","stride for reading hills files");
     574         159 :   keys.addFlag("WALKERS_MPI",false,"Switch on MPI version of multiple walkers - not compatible with WALKERS_* options other than WALKERS_DIR");
     575         159 :   keys.add("optional","INTERVAL","one dimensional lower and upper limits, outside the limits the system will not feel the biasing force.");
     576         159 :   keys.addFlag("FLYING_GAUSSIAN",false,"Switch on flying Gaussian method, must be used with WALKERS_MPI");
     577         159 :   keys.addFlag("ACCELERATION",false,"Set to TRUE if you want to compute the metadynamics acceleration factor.");
     578         159 :   keys.add("optional","ACCELERATION_RFILE","a data file from which the acceleration should be read at the initial step of the simulation");
     579         159 :   keys.addFlag("CALC_MAX_BIAS", false, "Set to TRUE if you want to compute the maximum of the metadynamics V(s, t)");
     580         159 :   keys.addFlag("CALC_TRANSITION_BIAS", false, "Set to TRUE if you want to compute a metadynamics transition bias V*(t)");
     581         159 :   keys.add("numbered", "TRANSITIONWELL", "This keyword appears multiple times as TRANSITIONWELL followed by an integer. Each specifies the coordinates for one well as in transition-tempered metadynamics. At least one must be provided.");
     582         159 :   keys.addFlag("FREQUENCY_ADAPTIVE",false,"Set to TRUE if you want to enable frequency adaptive metadynamics such that the frequency for hill addition to change dynamically based on the acceleration factor.");
     583         159 :   keys.add("optional","FA_UPDATE_FREQUENCY","the frequency for updating the hill addition pace in frequency adaptive metadynamics, by default this is equal to the value given in PACE");
     584         159 :   keys.add("optional","FA_MAX_PACE","the maximum hill addition frequency allowed in frequency adaptive metadynamics. By default there is no maximum value.");
     585         159 :   keys.add("optional","FA_MIN_ACCELERATION","only update the hill addition pace in frequency adaptive metadynamics after reaching the minimum acceleration factor given here. By default it is 1.0.");
     586         159 :   keys.use("RESTART");
     587         159 :   keys.use("UPDATE_FROM");
     588         159 :   keys.use("UPDATE_UNTIL");
     589         159 : }
     590             : 
     591             : const std::string MetaD::tempering_names_[1][2] = {{"TT", "transition tempered"}};
     592             : 
     593         159 : void MetaD::registerTemperingKeywords(const std::string &name_stem, const std::string &name, Keywords &keys) {
     594         159 :   keys.add("optional", name_stem + "BIASFACTOR", "use " + name + " metadynamics with this bias factor.  Please note you must also specify temp");
     595         159 :   keys.add("optional", name_stem + "BIASTHRESHOLD", "use " + name + " metadynamics with this bias threshold.  Please note you must also specify " + name_stem + "BIASFACTOR");
     596         159 :   keys.add("optional", name_stem + "ALPHA", "use " + name + " metadynamics with this hill size decay exponent parameter.  Please note you must also specify " + name_stem + "BIASFACTOR");
     597         159 : }
     598             : 
     599         157 : MetaD::MetaD(const ActionOptions& ao):
     600             :   PLUMED_BIAS_INIT(ao),
     601         156 :   kbt_(0.0),
     602         156 :   stride_(0),
     603         156 :   calc_work_(false),
     604         156 :   welltemp_(false),
     605         156 :   biasf_(-1.0),
     606         156 :   isFirstStep_(true),
     607         156 :   height0_(std::numeric_limits<double>::max()),
     608         156 :   adaptive_(FlexibleBin::none),
     609         156 :   grid_(false),
     610         156 :   wgridstride_(0),
     611         156 :   mw_n_(1), mw_dir_(""), mw_id_(0), mw_rstride_(1),
     612         156 :   walkers_mpi_(false), mpi_nw_(0),
     613         156 :   flying_(false),
     614         156 :   acceleration_(false), acc_(0.0), acc_restart_mean_(0.0),
     615         156 :   calc_max_bias_(false), max_bias_(0.0),
     616         156 :   calc_transition_bias_(false), transition_bias_(0.0),
     617         156 :   dampfactor_(0.0),
     618         312 :   tt_specs_(false, "TT", "Transition Tempered", -1.0, 0.0, 1.0),
     619         156 :   current_stride_(0),
     620         156 :   freq_adaptive_(false),
     621         156 :   fa_update_frequency_(0),
     622         156 :   fa_max_stride_(0),
     623         156 :   fa_min_acceleration_(1.0),
     624         156 :   uppI_(-1), lowI_(-1), doInt_(false),
     625         156 :   calc_rct_(false),
     626         156 :   reweight_factor_(0.0),
     627         156 :   rct_ustride_(1),
     628         156 :   work_(0),
     629         156 :   nlist_(false),
     630         156 :   nlist_update_(false),
     631         469 :   nlist_steps_(0) {
     632         156 :   if(!dp2cutoffNoStretch()) {
     633         156 :     stretchA=dp2cutoffA;
     634         156 :     stretchB=dp2cutoffB;
     635             :   }
     636             :   // parse the flexible hills
     637             :   std::string adaptiveoption;
     638             :   adaptiveoption="NONE";
     639         312 :   parse("ADAPTIVE",adaptiveoption);
     640         156 :   if(adaptiveoption=="GEOM") {
     641          22 :     log.printf("  Uses Geometry-based hills width: sigma must be in distance units and only one sigma is needed\n");
     642          22 :     adaptive_=FlexibleBin::geometry;
     643         134 :   } else if(adaptiveoption=="DIFF") {
     644           3 :     log.printf("  Uses Diffusion-based hills width: sigma must be in time steps and only one sigma is needed\n");
     645           3 :     adaptive_=FlexibleBin::diffusion;
     646         131 :   } else if(adaptiveoption=="NONE") {
     647         130 :     adaptive_=FlexibleBin::none;
     648             :   } else {
     649           1 :     error("I do not know this type of adaptive scheme");
     650             :   }
     651             : 
     652         155 :   parse("FMT",fmt_);
     653             : 
     654             :   // parse the sigma
     655         155 :   parseVector("SIGMA",sigma0_);
     656         155 :   if(adaptive_==FlexibleBin::none) {
     657             :     // if you use normal sigma you need one sigma per argument
     658         130 :     if( sigma0_.size()!=getNumberOfArguments() ) {
     659           0 :       error("number of arguments does not match number of SIGMA parameters");
     660             :     }
     661             :   } else {
     662             :     // if you use flexible hills you need one sigma
     663          25 :     if(sigma0_.size()!=1) {
     664           1 :       error("If you choose ADAPTIVE you need only one sigma according to your choice of type (GEOM/DIFF)");
     665             :     }
     666             :     // if adaptive then the number must be an integer
     667          24 :     if(adaptive_==FlexibleBin::diffusion) {
     668           3 :       if(int(sigma0_[0])-sigma0_[0]>1.e-9 || int(sigma0_[0])-sigma0_[0] <-1.e-9 || int(sigma0_[0])<1 ) {
     669           0 :         error("In case of adaptive hills with diffusion, the sigma must be an integer which is the number of time steps\n");
     670             :       }
     671             :     }
     672             :     // here evtl parse the sigma min and max values
     673          48 :     parseVector("SIGMA_MIN",sigma0min_);
     674          24 :     if(sigma0min_.size()>0 && sigma0min_.size()!=getNumberOfArguments()) {
     675           1 :       error("the number of SIGMA_MIN values be the same of the number of the arguments");
     676          23 :     } else if(sigma0min_.size()==0) {
     677          23 :       sigma0min_.resize(getNumberOfArguments());
     678          67 :       for(unsigned i=0; i<getNumberOfArguments(); i++) {
     679          44 :         sigma0min_[i]=-1.;
     680             :       }
     681             :     }
     682             : 
     683          46 :     parseVector("SIGMA_MAX",sigma0max_);
     684          23 :     if(sigma0max_.size()>0 && sigma0max_.size()!=getNumberOfArguments()) {
     685           1 :       error("the number of SIGMA_MAX values be the same of the number of the arguments");
     686          22 :     } else if(sigma0max_.size()==0) {
     687          22 :       sigma0max_.resize(getNumberOfArguments());
     688          64 :       for(unsigned i=0; i<getNumberOfArguments(); i++) {
     689          42 :         sigma0max_[i]=-1.;
     690             :       }
     691             :     }
     692             : 
     693          44 :     flexbin_=Tools::make_unique<FlexibleBin>(adaptive_,this,sigma0_[0],sigma0min_,sigma0max_);
     694             :   }
     695             : 
     696             :   // note: HEIGHT is not compulsory, since one could use the TAU keyword, see below
     697         152 :   parse("HEIGHT",height0_);
     698         152 :   parse("PACE",stride_);
     699         151 :   if(stride_<=0) {
     700           0 :     error("frequency for hill addition is nonsensical");
     701             :   }
     702         151 :   current_stride_ = stride_;
     703         159 :   std::string hillsfname="HILLS";
     704         151 :   parse("FILE",hillsfname);
     705             : 
     706             :   // Manually set to calculate special bias quantities
     707             :   // throughout the course of simulation. (These are chosen due to
     708             :   // relevance for tempering and event-driven logic as well.)
     709         151 :   parseFlag("CALC_MAX_BIAS", calc_max_bias_);
     710         305 :   parseFlag("CALC_TRANSITION_BIAS", calc_transition_bias_);
     711             : 
     712             :   std::vector<double> rect_biasf_;
     713         302 :   parseVector("RECT",rect_biasf_);
     714         151 :   if(rect_biasf_.size()>0) {
     715          18 :     int r=0;
     716          18 :     if(comm.Get_rank()==0) {
     717           9 :       r=multi_sim_comm.Get_rank();
     718             :     }
     719          18 :     comm.Bcast(r,0);
     720          18 :     biasf_=rect_biasf_[r];
     721          18 :     log<<"  You are using RECT\n";
     722             :   } else {
     723         266 :     parse("BIASFACTOR",biasf_);
     724             :   }
     725         151 :   if( biasf_<1.0  && biasf_!=-1.0) {
     726           0 :     error("well tempered bias factor is nonsensical");
     727             :   }
     728         151 :   parse("DAMPFACTOR",dampfactor_);
     729         151 :   kbt_=getkBT();
     730         151 :   if(biasf_>=1.0) {
     731          38 :     if(kbt_==0.0) {
     732           0 :       error("Unless the MD engine passes the temperature to plumed, with well-tempered metad you must specify it using TEMP");
     733             :     }
     734          38 :     welltemp_=true;
     735             :   }
     736         151 :   if(dampfactor_>0.0) {
     737           2 :     if(kbt_==0.0) {
     738           0 :       error("Unless the MD engine passes the temperature to plumed, with damped metad you must specify it using TEMP");
     739             :     }
     740             :   }
     741             : 
     742         151 :   parseFlag("CALC_WORK",calc_work_);
     743             : 
     744             :   // Set transition tempering parameters.
     745             :   // Transition wells are read later via calc_transition_bias_.
     746         151 :   readTemperingSpecs(tt_specs_);
     747         151 :   if (tt_specs_.is_active) {
     748           3 :     calc_transition_bias_ = true;
     749             :   }
     750             : 
     751             :   // If any previous option specified to calculate a transition bias,
     752             :   // now read the transition wells for that quantity.
     753         151 :   if (calc_transition_bias_) {
     754          13 :     std::vector<double> tempcoords(getNumberOfArguments());
     755          26 :     for (unsigned i = 0; ; i++) {
     756          78 :       if (!parseNumberedVector("TRANSITIONWELL", i, tempcoords) ) {
     757             :         break;
     758             :       }
     759          26 :       if (tempcoords.size() != getNumberOfArguments()) {
     760           0 :         error("incorrect number of coordinates for transition tempering well");
     761             :       }
     762          26 :       transitionwells_.push_back(tempcoords);
     763             :     }
     764             :   }
     765             : 
     766         302 :   parse("TARGET",targetfilename_);
     767         151 :   if(targetfilename_.length()>0 && kbt_==0.0) {
     768           0 :     error("with TARGET temperature must be specified");
     769             :   }
     770         151 :   double tau=0.0;
     771         151 :   parse("TAU",tau);
     772         151 :   if(tau==0.0) {
     773         129 :     if(height0_==std::numeric_limits<double>::max()) {
     774           0 :       error("At least one between HEIGHT and TAU should be specified");
     775             :     }
     776             :     // if tau is not set, we compute it here from the other input parameters
     777         129 :     if(welltemp_) {
     778          19 :       tau=(kbt_*(biasf_-1.0))/height0_*getTimeStep()*stride_;
     779         110 :     } else if(dampfactor_>0.0) {
     780           0 :       tau=(kbt_*dampfactor_)/height0_*getTimeStep()*stride_;
     781             :     }
     782             :   } else {
     783          22 :     if(height0_!=std::numeric_limits<double>::max()) {
     784           0 :       error("At most one between HEIGHT and TAU should be specified");
     785             :     }
     786          22 :     if(welltemp_) {
     787          19 :       if(biasf_!=1.0) {
     788          15 :         height0_=(kbt_*(biasf_-1.0))/tau*getTimeStep()*stride_;
     789             :       } else {
     790           4 :         height0_=kbt_/tau*getTimeStep()*stride_;  // special case for gamma=1
     791             :       }
     792           3 :     } else if(dampfactor_>0.0) {
     793           2 :       height0_=(kbt_*dampfactor_)/tau*getTimeStep()*stride_;
     794             :     } else {
     795           1 :       error("TAU only makes sense in well-tempered or damped metadynamics");
     796             :     }
     797             :   }
     798             : 
     799             :   // Grid Stuff
     800         153 :   std::vector<std::string> gmin(getNumberOfArguments());
     801         300 :   parseVector("GRID_MIN",gmin);
     802         150 :   if(gmin.size()!=getNumberOfArguments() && gmin.size()!=0) {
     803           0 :     error("not enough values for GRID_MIN");
     804             :   }
     805         150 :   std::vector<std::string> gmax(getNumberOfArguments());
     806         300 :   parseVector("GRID_MAX",gmax);
     807         150 :   if(gmax.size()!=getNumberOfArguments() && gmax.size()!=0) {
     808           0 :     error("not enough values for GRID_MAX");
     809             :   }
     810         150 :   std::vector<unsigned> gbin(getNumberOfArguments());
     811             :   std::vector<double>   gspacing;
     812         300 :   parseVector("GRID_BIN",gbin);
     813         150 :   if(gbin.size()!=getNumberOfArguments() && gbin.size()!=0) {
     814           0 :     error("not enough values for GRID_BIN");
     815             :   }
     816         300 :   parseVector("GRID_SPACING",gspacing);
     817         150 :   if(gspacing.size()!=getNumberOfArguments() && gspacing.size()!=0) {
     818           0 :     error("not enough values for GRID_SPACING");
     819             :   }
     820         150 :   if(gmin.size()!=gmax.size()) {
     821           0 :     error("GRID_MAX and GRID_MIN should be either present or absent");
     822             :   }
     823         150 :   if(gspacing.size()!=0 && gmin.size()==0) {
     824           0 :     error("If GRID_SPACING is present also GRID_MIN and GRID_MAX should be present");
     825             :   }
     826         150 :   if(gbin.size()!=0     && gmin.size()==0) {
     827           0 :     error("If GRID_BIN is present also GRID_MIN and GRID_MAX should be present");
     828             :   }
     829         150 :   if(gmin.size()!=0) {
     830          61 :     if(gbin.size()==0 && gspacing.size()==0) {
     831           6 :       if(adaptive_==FlexibleBin::none) {
     832           6 :         log<<"  Binsize not specified, 1/5 of sigma will be be used\n";
     833           6 :         plumed_assert(sigma0_.size()==getNumberOfArguments());
     834           6 :         gspacing.resize(getNumberOfArguments());
     835          13 :         for(unsigned i=0; i<gspacing.size(); i++) {
     836           7 :           gspacing[i]=0.2*sigma0_[i];
     837             :         }
     838             :       } else {
     839             :         // with adaptive hills and grid a sigma min must be specified
     840           0 :         for(unsigned i=0; i<sigma0min_.size(); i++)
     841           0 :           if(sigma0min_[i]<=0) {
     842           0 :             error("When using ADAPTIVE Gaussians on a grid SIGMA_MIN must be specified");
     843             :           }
     844           0 :         log<<"  Binsize not specified, 1/5 of sigma_min will be be used\n";
     845           0 :         gspacing.resize(getNumberOfArguments());
     846           0 :         for(unsigned i=0; i<gspacing.size(); i++) {
     847           0 :           gspacing[i]=0.2*sigma0min_[i];
     848             :         }
     849             :       }
     850          55 :     } else if(gspacing.size()!=0 && gbin.size()==0) {
     851           2 :       log<<"  The number of bins will be estimated from GRID_SPACING\n";
     852          53 :     } else if(gspacing.size()!=0 && gbin.size()!=0) {
     853           1 :       log<<"  You specified both GRID_BIN and GRID_SPACING\n";
     854           1 :       log<<"  The more conservative (highest) number of bins will be used for each variable\n";
     855             :     }
     856          61 :     if(gbin.size()==0) {
     857           8 :       gbin.assign(getNumberOfArguments(),1);
     858             :     }
     859          61 :     if(gspacing.size()!=0)
     860          21 :       for(unsigned i=0; i<getNumberOfArguments(); i++) {
     861             :         double a,b;
     862          13 :         Tools::convert(gmin[i],a);
     863          12 :         Tools::convert(gmax[i],b);
     864          12 :         unsigned n=std::ceil(((b-a)/gspacing[i]));
     865          12 :         if(gbin[i]<n) {
     866          11 :           gbin[i]=n;
     867             :         }
     868             :       }
     869             :   }
     870         149 :   if(gbin.size()>0) {
     871          60 :     grid_=true;
     872             :   }
     873             : 
     874         149 :   bool sparsegrid=false;
     875         149 :   parseFlag("GRID_SPARSE",sparsegrid);
     876         149 :   bool nospline=false;
     877         149 :   parseFlag("GRID_NOSPLINE",nospline);
     878         149 :   bool spline=!nospline;
     879         300 :   parse("GRID_WSTRIDE",wgridstride_);
     880             :   std::string gridfilename_;
     881         149 :   parse("GRID_WFILE",gridfilename_);
     882         149 :   parseFlag("STORE_GRIDS",storeOldGrids_);
     883         149 :   if(grid_ && gridfilename_.length()>0) {
     884          19 :     if(wgridstride_==0 ) {
     885           0 :       error("frequency with which to output grid not specified use GRID_WSTRIDE");
     886             :     }
     887             :   }
     888         149 :   if(grid_ && wgridstride_>0) {
     889          19 :     if(gridfilename_.length()==0) {
     890           1 :       error("grid filename not specified use GRID_WFILE");
     891             :     }
     892             :   }
     893             : 
     894             :   std::string gridreadfilename_;
     895         149 :   parse("GRID_RFILE",gridreadfilename_);
     896             : 
     897         149 :   if(!grid_&&gridfilename_.length()> 0) {
     898           0 :     error("To write a grid you need first to define it!");
     899             :   }
     900         149 :   if(!grid_&&gridreadfilename_.length()>0) {
     901           0 :     error("To read a grid you need first to define it!");
     902             :   }
     903             : 
     904             :   /*setup neighbor list stuff*/
     905         298 :   parseFlag("NLIST", nlist_);
     906         149 :   nlist_center_.resize(getNumberOfArguments());
     907         149 :   nlist_dev2_.resize(getNumberOfArguments());
     908         149 :   if(nlist_&&grid_) {
     909           1 :     error("NLIST and GRID cannot be combined!");
     910             :   }
     911             :   std::vector<double> nlist_param;
     912         298 :   parseVector("NLIST_PARAMETERS",nlist_param);
     913         149 :   if(nlist_param.size()==0) {
     914         149 :     nlist_param_[0]=6.0;//*DP2CUTOFF -> max distance of neighbors
     915         149 :     nlist_param_[1]=0.5;//*nlist_dev2_[i] -> condition for rebuilding
     916             :   } else {
     917           0 :     plumed_massert(nlist_param.size()==2,"two cutoff parameters are needed for the neighbor list");
     918           0 :     plumed_massert(nlist_param[0]>1.0,"the first of NLIST_PARAMETERS must be greater than 1. The smaller the first, the smaller should be the second as well");
     919           0 :     const double min_PARAM_1=(1.-1./std::sqrt(nlist_param[0]/2))+0.16;
     920           0 :     plumed_massert(nlist_param[1]>0,"the second of NLIST_PARAMETERS must be greater than 0");
     921           0 :     plumed_massert(nlist_param[1]<=min_PARAM_1,"the second of NLIST_PARAMETERS must be smaller to avoid systematic errors. Largest suggested value is: 1.16-1/sqrt(PARAM_0/2) = "+std::to_string(min_PARAM_1));
     922           0 :     nlist_param_[0]=nlist_param[0];
     923           0 :     nlist_param_[1]=nlist_param[1];
     924             :   }
     925             : 
     926             :   // Reweighting factor rct
     927         149 :   parseFlag("CALC_RCT",calc_rct_);
     928         149 :   if (calc_rct_) {
     929           6 :     plumed_massert(grid_,"CALC_RCT is supported only if bias is on a grid");
     930             :   }
     931         149 :   parse("RCT_USTRIDE",rct_ustride_);
     932             : 
     933         149 :   if(dampfactor_>0.0) {
     934           2 :     if(!grid_) {
     935           0 :       error("With DAMPFACTOR you should use grids");
     936             :     }
     937             :   }
     938             : 
     939             :   // Multiple walkers
     940         149 :   parse("WALKERS_N",mw_n_);
     941         149 :   parse("WALKERS_ID",mw_id_);
     942         149 :   if(mw_n_<=mw_id_) {
     943           0 :     error("walker ID should be a numerical value less than the total number of walkers");
     944             :   }
     945         149 :   parse("WALKERS_DIR",mw_dir_);
     946         149 :   parse("WALKERS_RSTRIDE",mw_rstride_);
     947             : 
     948             :   // MPI version
     949         149 :   parseFlag("WALKERS_MPI",walkers_mpi_);
     950             : 
     951             :   //If this Action is not compiled with MPI the user is informed and we exit gracefully
     952         149 :   if(walkers_mpi_) {
     953          39 :     plumed_assert(Communicator::plumedHasMPI()) << "Invalid walkers configuration: WALKERS_MPI flag requires MPI compilation";
     954          40 :     plumed_assert(Communicator::initialized()) << "Invalid walkers configuration: WALKERS_MPI needs the communicator correctly initialized.";
     955             :   }
     956             : 
     957             :   // Flying Gaussian
     958         148 :   parseFlag("FLYING_GAUSSIAN", flying_);
     959             : 
     960             :   // Inteval keyword
     961         149 :   std::vector<double> tmpI(2);
     962         296 :   parseVector("INTERVAL",tmpI);
     963         148 :   if(tmpI.size()!=2&&tmpI.size()!=0) {
     964           0 :     error("both a lower and an upper limits must be provided with INTERVAL");
     965         148 :   } else if(tmpI.size()==2) {
     966           2 :     lowI_=tmpI.at(0);
     967           2 :     uppI_=tmpI.at(1);
     968           2 :     if(getNumberOfArguments()!=1) {
     969           0 :       error("INTERVAL limits correction works only for monodimensional metadynamics!");
     970             :     }
     971           2 :     if(uppI_<lowI_) {
     972           0 :       error("The Upper limit must be greater than the Lower limit!");
     973             :     }
     974           2 :     if(getPntrToArgument(0)->isPeriodic()) {
     975           0 :       error("INTERVAL cannot be used with periodic variables!");
     976             :     }
     977           2 :     doInt_=true;
     978             :   }
     979             : 
     980         296 :   parseFlag("ACCELERATION",acceleration_);
     981             :   // Check for a restart acceleration if acceleration is active.
     982             :   std::string acc_rfilename;
     983         148 :   if(acceleration_) {
     984           8 :     parse("ACCELERATION_RFILE", acc_rfilename);
     985             :   }
     986             : 
     987         148 :   freq_adaptive_=false;
     988         148 :   parseFlag("FREQUENCY_ADAPTIVE",freq_adaptive_);
     989             :   //
     990         148 :   fa_update_frequency_=0;
     991         148 :   parse("FA_UPDATE_FREQUENCY",fa_update_frequency_);
     992         148 :   if(fa_update_frequency_!=0 && !freq_adaptive_) {
     993           0 :     plumed_merror("It doesn't make sense to use the FA_MAX_PACE keyword if frequency adaptive METAD hasn't been activated by using the FREQUENCY_ADAPTIVE flag");
     994             :   }
     995         148 :   if(fa_update_frequency_==0 && freq_adaptive_) {
     996           0 :     fa_update_frequency_=stride_;
     997             :   }
     998             :   //
     999         148 :   fa_max_stride_=0;
    1000         148 :   parse("FA_MAX_PACE",fa_max_stride_);
    1001         148 :   if(fa_max_stride_!=0 && !freq_adaptive_) {
    1002           0 :     plumed_merror("It doesn't make sense to use the FA_MAX_PACE keyword if frequency adaptive METAD hasn't been activated by using the FREQUENCY_ADAPTIVE flag");
    1003             :   }
    1004             :   //
    1005         148 :   fa_min_acceleration_=1.0;
    1006         148 :   parse("FA_MIN_ACCELERATION",fa_min_acceleration_);
    1007         148 :   if(fa_min_acceleration_!=1.0 && !freq_adaptive_) {
    1008           0 :     plumed_merror("It doesn't make sense to use the FA_MIN_ACCELERATION keyword if frequency adaptive METAD hasn't been activated by using the FREQUENCY_ADAPTIVE flag");
    1009             :   }
    1010             : 
    1011         148 :   checkRead();
    1012             : 
    1013         148 :   log.printf("  Gaussian width ");
    1014         148 :   if (adaptive_==FlexibleBin::diffusion) {
    1015           2 :     log.printf(" (Note: The units of sigma are in timesteps) ");
    1016             :   }
    1017         148 :   if (adaptive_==FlexibleBin::geometry) {
    1018          19 :     log.printf(" (Note: The units of sigma are in dist units) ");
    1019             :   }
    1020         396 :   for(unsigned i=0; i<sigma0_.size(); ++i) {
    1021         248 :     log.printf(" %f",sigma0_[i]);
    1022             :   }
    1023         148 :   log.printf("  Gaussian height %f\n",height0_);
    1024         148 :   log.printf("  Gaussian deposition pace %d\n",stride_);
    1025         148 :   log.printf("  Gaussian file %s\n",hillsfname.c_str());
    1026         148 :   if(welltemp_) {
    1027          38 :     log.printf("  Well-Tempered Bias Factor %f\n",biasf_);
    1028          38 :     log.printf("  Hills relaxation time (tau) %f\n",tau);
    1029          38 :     log.printf("  KbT %f\n",kbt_);
    1030             :   }
    1031             : 
    1032             :   // Transition tempered metadynamics options
    1033         148 :   if (tt_specs_.is_active) {
    1034           3 :     logTemperingSpecs(tt_specs_);
    1035             :     // Check that the appropriate transition bias quantity is calculated.
    1036             :     // (Should never trip, given that the flag is automatically set.)
    1037           3 :     if (!calc_transition_bias_) {
    1038           0 :       error(" transition tempering requires calculation of a transition bias");
    1039             :     }
    1040             :   }
    1041             : 
    1042             :   // Overall tempering sanity check (this gets tricky when multiple are active).
    1043             :   // When multiple temperings are active, it's fine to have one tempering attempt
    1044             :   // to increase hill size with increasing bias, so long as the others can shrink
    1045             :   // the hills faster than it increases their size in the long-time limit.
    1046             :   // This set of checks ensures that the hill sizes eventually decay to zero as c(t)
    1047             :   // diverges to infinity.
    1048             :   // The alpha parameter allows hills to decay as 1/t^alpha instead of 1/t,
    1049             :   // a slower decay, so as t -> infinity, only the temperings with the largest
    1050             :   // alphas govern the final asymptotic decay. (Alpha helps prevent false convergence.)
    1051         148 :   if (welltemp_ || dampfactor_ > 0.0 || tt_specs_.is_active) {
    1052             :     // Determine the number of active temperings.
    1053             :     int n_active = 0;
    1054          43 :     if (welltemp_) {
    1055             :       n_active++;
    1056             :     }
    1057          43 :     if (dampfactor_ > 0.0) {
    1058           2 :       n_active++;
    1059             :     }
    1060          43 :     if (tt_specs_.is_active) {
    1061           3 :       n_active++;
    1062             :     }
    1063             :     // Find the greatest alpha.
    1064          43 :     double greatest_alpha = 0.0;
    1065          43 :     if (welltemp_) {
    1066          38 :       greatest_alpha = std::max(greatest_alpha, 1.0);
    1067             :     }
    1068          43 :     if (dampfactor_ > 0.0) {
    1069           4 :       greatest_alpha = std::max(greatest_alpha, 1.0);
    1070             :     }
    1071          43 :     if (tt_specs_.is_active) {
    1072           6 :       greatest_alpha = std::max(greatest_alpha, tt_specs_.alpha);
    1073             :     }
    1074             :     // Find the least alpha.
    1075          43 :     double least_alpha = 1.0;
    1076             :     if (welltemp_) {
    1077             :       least_alpha = std::min(least_alpha, 1.0);
    1078             :     }
    1079          43 :     if (dampfactor_ > 0.0) {
    1080           2 :       least_alpha = std::min(least_alpha, 1.0);
    1081             :     }
    1082          43 :     if (tt_specs_.is_active) {
    1083           4 :       least_alpha = std::min(least_alpha, tt_specs_.alpha);
    1084             :     }
    1085             :     // Find the inverse harmonic average of the delta T parameters for all
    1086             :     // of the temperings with the greatest alpha values.
    1087             :     double total_governing_deltaT_inv = 0.0;
    1088          43 :     if (welltemp_ && 1.0 == greatest_alpha && biasf_ != 1.0) {
    1089          34 :       total_governing_deltaT_inv += 1.0 / (biasf_ - 1.0);
    1090             :     }
    1091          43 :     if (dampfactor_ > 0.0 && 1.0 == greatest_alpha) {
    1092           2 :       total_governing_deltaT_inv += 1.0 / (dampfactor_);
    1093             :     }
    1094          43 :     if (tt_specs_.is_active && tt_specs_.alpha == greatest_alpha) {
    1095           3 :       total_governing_deltaT_inv += 1.0 / (tt_specs_.biasf - 1.0);
    1096             :     }
    1097             :     // Give a newbie-friendly error message for people using one tempering if
    1098             :     // only one is active.
    1099          43 :     if (n_active == 1 && total_governing_deltaT_inv < 0.0) {
    1100           0 :       error("for stable tempering, the bias factor must be greater than one");
    1101             :       // Give a slightly more complex error message to users stacking multiple
    1102             :       // tempering options at a time, but all with uniform alpha values.
    1103          43 :     } else if (total_governing_deltaT_inv < 0.0 && greatest_alpha == least_alpha) {
    1104           0 :       error("for stable tempering, the sum of the inverse Delta T parameters must be greater than zero!");
    1105             :       // Give the most technical error message to users stacking multiple tempering
    1106             :       // options with different alpha parameters.
    1107          43 :     } else if (total_governing_deltaT_inv < 0.0 && greatest_alpha != least_alpha) {
    1108           0 :       error("for stable tempering, the sum of the inverse Delta T parameters for the greatest asymptotic hill decay exponents must be greater than zero!");
    1109             :     }
    1110             :   }
    1111             : 
    1112         148 :   if(doInt_) {
    1113           2 :     log.printf("  Upper and Lower limits boundaries for the bias are activated at %f - %f\n", lowI_, uppI_);
    1114             :   }
    1115             : 
    1116         148 :   if(grid_) {
    1117          60 :     log.printf("  Grid min");
    1118         161 :     for(unsigned i=0; i<gmin.size(); ++i) {
    1119         101 :       log.printf(" %s",gmin[i].c_str() );
    1120             :     }
    1121          60 :     log.printf("\n");
    1122          60 :     log.printf("  Grid max");
    1123         161 :     for(unsigned i=0; i<gmax.size(); ++i) {
    1124         101 :       log.printf(" %s",gmax[i].c_str() );
    1125             :     }
    1126          60 :     log.printf("\n");
    1127          60 :     log.printf("  Grid bin");
    1128         161 :     for(unsigned i=0; i<gbin.size(); ++i) {
    1129         101 :       log.printf(" %u",gbin[i]);
    1130             :     }
    1131          60 :     log.printf("\n");
    1132          60 :     if(spline) {
    1133          60 :       log.printf("  Grid uses spline interpolation\n");
    1134             :     }
    1135          60 :     if(sparsegrid) {
    1136           6 :       log.printf("  Grid uses sparse grid\n");
    1137             :     }
    1138          60 :     if(wgridstride_>0) {
    1139          19 :       log.printf("  Grid is written on file %s with stride %d\n",gridfilename_.c_str(),wgridstride_);
    1140             :     }
    1141             :   }
    1142             : 
    1143         148 :   if(mw_n_>1) {
    1144           6 :     if(walkers_mpi_) {
    1145           0 :       error("MPI version of multiple walkers is not compatible with filesystem version of multiple walkers");
    1146             :     }
    1147           6 :     log.printf("  %d multiple walkers active\n",mw_n_);
    1148           6 :     log.printf("  walker id %d\n",mw_id_);
    1149           6 :     log.printf("  reading stride %d\n",mw_rstride_);
    1150           6 :     if(mw_dir_!="") {
    1151           3 :       log.printf("  directory with hills files %s\n",mw_dir_.c_str());
    1152             :     }
    1153             :   } else {
    1154         142 :     if(walkers_mpi_) {
    1155          38 :       log.printf("  Multiple walkers active using MPI communnication\n");
    1156          38 :       if(mw_dir_!="") {
    1157           0 :         log.printf("  directory with hills files %s\n",mw_dir_.c_str());
    1158             :       }
    1159          38 :       if(comm.Get_rank()==0) {
    1160             :         // Only root of group can communicate with other walkers
    1161          23 :         mpi_nw_=multi_sim_comm.Get_size();
    1162             :       }
    1163             :       // Communicate to the other members of the same group
    1164             :       // info abount number of walkers and walker index
    1165          38 :       comm.Bcast(mpi_nw_,0);
    1166             :     }
    1167             :   }
    1168             : 
    1169         148 :   if(flying_) {
    1170           6 :     if(!walkers_mpi_) {
    1171           0 :       error("Flying Gaussian method must be used with MPI version of multiple walkers");
    1172             :     }
    1173           6 :     log.printf("  Flying Gaussian method with %d walkers active\n",mpi_nw_);
    1174             :   }
    1175             : 
    1176         148 :   if(nlist_) {
    1177           2 :     addComponent("nlker");
    1178           2 :     componentIsNotPeriodic("nlker");
    1179           2 :     addComponent("nlsteps");
    1180           2 :     componentIsNotPeriodic("nlsteps");
    1181             :   }
    1182             : 
    1183         148 :   if(calc_rct_) {
    1184          12 :     addComponent("rbias");
    1185          12 :     componentIsNotPeriodic("rbias");
    1186          12 :     addComponent("rct");
    1187           6 :     componentIsNotPeriodic("rct");
    1188           6 :     log.printf("  The c(t) reweighting factor will be calculated every %u hills\n",rct_ustride_);
    1189          12 :     getPntrToComponent("rct")->set(reweight_factor_);
    1190             :   }
    1191             : 
    1192         148 :   if(calc_work_) {
    1193           2 :     addComponent("work");
    1194           2 :     componentIsNotPeriodic("work");
    1195             :   }
    1196             : 
    1197         148 :   if(acceleration_) {
    1198           4 :     if (kbt_ == 0.0) {
    1199           0 :       error("The calculation of the acceleration works only if simulation temperature has been defined");
    1200             :     }
    1201           4 :     log.printf("  calculation on the fly of the acceleration factor\n");
    1202           8 :     addComponent("acc");
    1203           8 :     componentIsNotPeriodic("acc");
    1204             :     // Set the initial value of the the acceleration.
    1205             :     // If this is not a restart, set to 1.0.
    1206           4 :     if (acc_rfilename.length() == 0) {
    1207           4 :       getPntrToComponent("acc")->set(1.0);
    1208           2 :       if(getRestart()) {
    1209           1 :         log.printf("  WARNING: calculating the acceleration factor in a restarted run without reading in the previous value will most likely lead to incorrect results.\n");
    1210           1 :         log.printf("           You should use the ACCELERATION_RFILE keyword.\n");
    1211             :       }
    1212             :       // Otherwise, read and set the restart value.
    1213             :     } else {
    1214             :       // Restart of acceleration does not make sense if the restart timestep is zero.
    1215             :       //if (getStep() == 0) {
    1216             :       //  error("Restarting calculation of acceleration factors works only if simulation timestep is restarted correctly");
    1217             :       //}
    1218             :       // Open the ACCELERATION_RFILE.
    1219           2 :       IFile acc_rfile;
    1220           2 :       acc_rfile.link(*this);
    1221           2 :       if(acc_rfile.FileExist(acc_rfilename)) {
    1222           2 :         acc_rfile.open(acc_rfilename);
    1223             :       } else {
    1224           0 :         error("The ACCELERATION_RFILE file you want to read: " + acc_rfilename + ", cannot be found!");
    1225             :       }
    1226             :       // Read the file to find the restart acceleration.
    1227           2 :       double acc_rmean=0.0;
    1228           2 :       double acc_rtime=0.0;
    1229             :       bool found=false;
    1230           2 :       std::string acclabel = getLabel() + ".acc";
    1231           2 :       acc_rfile.allowIgnoredFields();
    1232         248 :       while(acc_rfile.scanField("time", acc_rtime)) {
    1233         122 :         acc_rfile.scanField(acclabel, acc_rmean);
    1234         122 :         acc_rfile.scanField();
    1235             :         found=true;
    1236             :       }
    1237           2 :       if(!found) {
    1238           0 :         error("The ACCELERATION_RFILE file you want to read: " + acc_rfilename + ", does not contain a time field!");
    1239             :       }
    1240           2 :       acc_restart_mean_ = acc_rmean;
    1241             :       // Set component based on the read values.
    1242           2 :       getPntrToComponent("acc")->set(acc_rmean);
    1243           2 :       log.printf("  initial acceleration factor read from file %s: value of %f at time %f\n",acc_rfilename.c_str(),acc_rmean,acc_rtime);
    1244           2 :     }
    1245             :   }
    1246             : 
    1247         148 :   if (calc_max_bias_) {
    1248           0 :     if (!grid_) {
    1249           0 :       error("Calculating the maximum bias on the fly works only with a grid");
    1250             :     }
    1251           0 :     log.printf("  calculation on the fly of the maximum bias max(V(s,t)) \n");
    1252           0 :     addComponent("maxbias");
    1253           0 :     componentIsNotPeriodic("maxbias");
    1254             :   }
    1255             : 
    1256         148 :   if (calc_transition_bias_) {
    1257          13 :     if (!grid_) {
    1258           0 :       error("Calculating the transition bias on the fly works only with a grid");
    1259             :     }
    1260          13 :     log.printf("  calculation on the fly of the transition bias V*(t)\n");
    1261          26 :     addComponent("transbias");
    1262          13 :     componentIsNotPeriodic("transbias");
    1263          13 :     log<<"  Number of transition wells "<<transitionwells_.size()<<"\n";
    1264          13 :     if (transitionwells_.size() == 0) {
    1265           0 :       error("Calculating the transition bias on the fly requires definition of at least one transition well");
    1266             :     }
    1267             :     // Check that a grid is in use.
    1268          13 :     if (!grid_) {
    1269           0 :       error(" transition barrier finding requires a grid for the bias");
    1270             :     }
    1271             :     // Log the wells and check that they are in the grid.
    1272          39 :     for (unsigned i = 0; i < transitionwells_.size(); i++) {
    1273             :       // Log the coordinate.
    1274          26 :       log.printf("  Transition well %d at coordinate ", i);
    1275          64 :       for (unsigned j = 0; j < getNumberOfArguments(); j++) {
    1276          38 :         log.printf("%f ", transitionwells_[i][j]);
    1277             :       }
    1278          26 :       log.printf("\n");
    1279             :       // Check that the coordinate is in the grid.
    1280          64 :       for (unsigned j = 0; j < getNumberOfArguments(); j++) {
    1281             :         double max, min;
    1282          38 :         Tools::convert(gmin[j], min);
    1283          38 :         Tools::convert(gmax[j], max);
    1284          38 :         if (transitionwells_[i][j] < min || transitionwells_[i][j] > max) {
    1285           0 :           error(" transition well is not in grid");
    1286             :         }
    1287             :       }
    1288             :     }
    1289             :   }
    1290             : 
    1291         148 :   if(freq_adaptive_) {
    1292           2 :     if(!acceleration_) {
    1293           0 :       plumed_merror("Frequency adaptive metadynamics only works if the calculation of the acceleration factor is enabled with the ACCELERATION keyword\n");
    1294             :     }
    1295           2 :     if(walkers_mpi_) {
    1296           0 :       plumed_merror("Combining frequency adaptive metadynamics with MPI multiple walkers is not allowed");
    1297             :     }
    1298             : 
    1299           2 :     log.printf("  Frequency adaptive metadynamics enabled\n");
    1300           2 :     if(getRestart() && acc_rfilename.length() == 0) {
    1301           0 :       log.printf("  WARNING: using the frequency adaptive scheme in a restarted run without reading in the previous value of the acceleration factor will most likely lead to incorrect results.\n");
    1302           0 :       log.printf("           You should use the ACCELERATION_RFILE keyword.\n");
    1303             :     }
    1304           2 :     log.printf("  The frequency for hill addition will change dynamically based on the metadynamics acceleration factor\n");
    1305           2 :     log.printf("  The hill addition frequency will be updated every %d steps\n",fa_update_frequency_);
    1306           2 :     if(fa_min_acceleration_>1.0) {
    1307           2 :       log.printf("  The hill addition frequency will only be updated once the metadynamics acceleration factor becomes larger than %.1f \n",fa_min_acceleration_);
    1308             :     }
    1309           2 :     if(fa_max_stride_!=0) {
    1310           2 :       log.printf("  The hill addition frequency will not become larger than %d steps\n",fa_max_stride_);
    1311             :     }
    1312           4 :     addComponent("pace");
    1313           2 :     componentIsNotPeriodic("pace");
    1314           2 :     updateFrequencyAdaptiveStride();
    1315             :   }
    1316             : 
    1317             :   // initializing and checking grid
    1318             :   bool restartedFromGrid=false;  // restart from grid file
    1319         148 :   if(grid_) {
    1320          60 :     if(!(gridreadfilename_.length()>0)) {
    1321             :       // check for mesh and sigma size
    1322         116 :       for(unsigned i=0; i<getNumberOfArguments(); i++) {
    1323             :         double a,b;
    1324          74 :         Tools::convert(gmin[i],a);
    1325          74 :         Tools::convert(gmax[i],b);
    1326          74 :         double mesh=(b-a)/((double)gbin[i]);
    1327          74 :         if(adaptive_==FlexibleBin::none) {
    1328          74 :           if(mesh>0.5*sigma0_[i]) {
    1329          38 :             log<<"  WARNING: Using a METAD with a Grid Spacing larger than half of the Gaussians width (SIGMA) can produce artifacts\n";
    1330             :           }
    1331             :         } else {
    1332           0 :           if(sigma0min_[i]<0.) {
    1333           0 :             error("When using ADAPTIVE Gaussians on a grid SIGMA_MIN must be specified");
    1334             :           }
    1335           0 :           if(mesh>0.5*sigma0min_[i]) {
    1336           0 :             log<<"  WARNING: to use a METAD with a GRID and ADAPTIVE you need to set a Grid Spacing lower than half of the Gaussians (SIGMA_MIN) \n";
    1337             :           }
    1338             :         }
    1339             :       }
    1340          42 :       std::string funcl=getLabel() + ".bias";
    1341          42 :       if(!sparsegrid) {
    1342          36 :         BiasGrid_=Tools::make_unique<Grid>(funcl,getArguments(),gmin,gmax,gbin,spline,true);
    1343             :       } else {
    1344           6 :         BiasGrid_=Tools::make_unique<SparseGrid>(funcl,getArguments(),gmin,gmax,gbin,spline,true);
    1345             :       }
    1346          42 :       std::vector<std::string> actualmin=BiasGrid_->getMin();
    1347          42 :       std::vector<std::string> actualmax=BiasGrid_->getMax();
    1348         116 :       for(unsigned i=0; i<getNumberOfArguments(); i++) {
    1349             :         std::string is;
    1350          74 :         Tools::convert(i,is);
    1351          74 :         if(gmin[i]!=actualmin[i]) {
    1352           0 :           error("GRID_MIN["+is+"] must be adjusted to "+actualmin[i]+" to fit periodicity");
    1353             :         }
    1354          74 :         if(gmax[i]!=actualmax[i]) {
    1355           0 :           error("GRID_MAX["+is+"] must be adjusted to "+actualmax[i]+" to fit periodicity");
    1356             :         }
    1357             :       }
    1358          42 :     } else {
    1359             :       // read the grid in input, find the keys
    1360          18 :       if(walkers_mpi_&&gridreadfilename_.at(0)!='/') {
    1361             :         //if possible the root replica will share its current folder so that all walkers will read the same file
    1362           0 :         const std::string ret = std::filesystem::current_path();
    1363           0 :         gridreadfilename_ = "/" + gridreadfilename_;
    1364           0 :         gridreadfilename_ = ret + gridreadfilename_;
    1365           0 :         if(comm.Get_rank()==0) {
    1366           0 :           multi_sim_comm.Bcast(gridreadfilename_,0);
    1367             :         }
    1368           0 :         comm.Bcast(gridreadfilename_,0);
    1369             :       }
    1370          18 :       IFile gridfile;
    1371          18 :       gridfile.link(*this);
    1372          18 :       if(gridfile.FileExist(gridreadfilename_)) {
    1373          18 :         gridfile.open(gridreadfilename_);
    1374             :       } else {
    1375           0 :         error("The GRID file you want to read: " + gridreadfilename_ + ", cannot be found!");
    1376             :       }
    1377          18 :       std::string funcl=getLabel() + ".bias";
    1378          36 :       BiasGrid_=GridBase::create(funcl, getArguments(), gridfile, gmin, gmax, gbin, sparsegrid, spline, true);
    1379          18 :       if(BiasGrid_->getDimension()!=getNumberOfArguments()) {
    1380           0 :         error("mismatch between dimensionality of input grid and number of arguments");
    1381             :       }
    1382          45 :       for(unsigned i=0; i<getNumberOfArguments(); ++i) {
    1383          54 :         if( getPntrToArgument(i)->isPeriodic()!=BiasGrid_->getIsPeriodic()[i] ) {
    1384           0 :           error("periodicity mismatch between arguments and input bias");
    1385             :         }
    1386             :         double a, b;
    1387          27 :         Tools::convert(gmin[i],a);
    1388          27 :         Tools::convert(gmax[i],b);
    1389          27 :         double mesh=(b-a)/((double)gbin[i]);
    1390          27 :         if(mesh>0.5*sigma0_[i]) {
    1391          27 :           log<<"  WARNING: Using a METAD with a Grid Spacing larger than half of the Gaussians width can produce artifacts\n";
    1392             :         }
    1393             :       }
    1394          18 :       log.printf("  Restarting from %s\n",gridreadfilename_.c_str());
    1395          18 :       if(getRestart()) {
    1396             :         restartedFromGrid=true;
    1397             :       }
    1398          18 :     }
    1399             :   }
    1400             : 
    1401             :   // if we are restarting from GRID and using WALKERS_MPI we can check that all walkers have actually read the grid
    1402         148 :   if(getRestart()&&walkers_mpi_) {
    1403           9 :     std::vector<int> restarted(mpi_nw_,0);
    1404           9 :     if(comm.Get_rank()==0) {
    1405           6 :       multi_sim_comm.Allgather(int(restartedFromGrid), restarted);
    1406             :     }
    1407           9 :     comm.Bcast(restarted,0);
    1408             :     int result = std::accumulate(restarted.begin(),restarted.end(),0);
    1409           9 :     if(result!=0&&result!=mpi_nw_) {
    1410           0 :       error("in this WALKERS_MPI run some replica have restarted from GRID while other do not!");
    1411             :     }
    1412             :   }
    1413             : 
    1414         186 :   if(walkers_mpi_&&mw_dir_==""&&hillsfname.at(0)!='/') {
    1415             :     //if possible the root replica will share its current folder so that all walkers will read the same file
    1416          76 :     const std::string ret = std::filesystem::current_path();
    1417             :     mw_dir_ = ret;
    1418          38 :     mw_dir_ = mw_dir_ + "/";
    1419          38 :     if(comm.Get_rank()==0) {
    1420          23 :       multi_sim_comm.Bcast(mw_dir_,0);
    1421             :     }
    1422          38 :     comm.Bcast(mw_dir_,0);
    1423             :   }
    1424             : 
    1425             :   // creating std::vector of ifile* for hills reading
    1426             :   // open all files at the beginning and read Gaussians if restarting
    1427             :   bool restartedFromHills=false;  // restart from hills files
    1428         308 :   for(int i=0; i<mw_n_; ++i) {
    1429             :     std::string fname;
    1430         160 :     if(mw_dir_!="") {
    1431          47 :       if(mw_n_>1) {
    1432           9 :         std::stringstream out;
    1433           9 :         out << i;
    1434          18 :         fname = mw_dir_+"/"+hillsfname+"."+out.str();
    1435          47 :       } else if(walkers_mpi_) {
    1436          76 :         fname = mw_dir_+"/"+hillsfname;
    1437             :       } else {
    1438             :         fname = hillsfname;
    1439             :       }
    1440             :     } else {
    1441         113 :       if(mw_n_>1) {
    1442           9 :         std::stringstream out;
    1443           9 :         out << i;
    1444          18 :         fname = hillsfname+"."+out.str();
    1445           9 :       } else {
    1446             :         fname = hillsfname;
    1447             :       }
    1448             :     }
    1449         160 :     ifiles_.emplace_back(Tools::make_unique<IFile>());
    1450             :     // this is just a shortcut pointer to the last element:
    1451             :     IFile *ifile = ifiles_.back().get();
    1452         160 :     ifilesnames_.push_back(fname);
    1453         160 :     ifile->link(*this);
    1454         160 :     if(ifile->FileExist(fname)) {
    1455          33 :       ifile->open(fname);
    1456          33 :       if(getRestart()&&!restartedFromGrid) {
    1457          19 :         log.printf("  Restarting from %s:",ifilesnames_[i].c_str());
    1458          19 :         readGaussians(ifiles_[i].get());
    1459             :         restartedFromHills=true;
    1460             :       }
    1461          33 :       ifiles_[i]->reset(false);
    1462             :       // close only the walker own hills file for later writing
    1463          33 :       if(i==mw_id_) {
    1464          30 :         ifiles_[i]->close();
    1465             :       }
    1466             :     } else {
    1467             :       // in case a file does not exist and we are restarting, complain that the file was not found
    1468         127 :       if(getRestart()&&!restartedFromGrid) {
    1469           0 :         error("restart file "+fname+" not found");
    1470             :       }
    1471             :     }
    1472             :   }
    1473             : 
    1474             :   // if we are restarting from FILE and using WALKERS_MPI we can check that all walkers have actually read the FILE
    1475         148 :   if(getRestart()&&walkers_mpi_) {
    1476           9 :     std::vector<int> restarted(mpi_nw_,0);
    1477           9 :     if(comm.Get_rank()==0) {
    1478           6 :       multi_sim_comm.Allgather(int(restartedFromHills), restarted);
    1479             :     }
    1480           9 :     comm.Bcast(restarted,0);
    1481             :     int result = std::accumulate(restarted.begin(),restarted.end(),0);
    1482           9 :     if(result!=0&&result!=mpi_nw_) {
    1483           0 :       error("in this WALKERS_MPI run some replica have restarted from FILE while other do not!");
    1484             :     }
    1485             :   }
    1486             : 
    1487         148 :   comm.Barrier();
    1488             :   // this barrier is needed when using walkers_mpi
    1489             :   // to be sure that all files have been read before
    1490             :   // backing them up
    1491             :   // it should not be used when walkers_mpi is false otherwise
    1492             :   // it would introduce troubles when using replicas without METAD
    1493             :   // (e.g. in bias exchange with a neutral replica)
    1494             :   // see issue #168 on github
    1495         148 :   if(comm.Get_rank()==0 && walkers_mpi_) {
    1496          23 :     multi_sim_comm.Barrier();
    1497             :   }
    1498             : 
    1499         148 :   if(targetfilename_.length()>0) {
    1500           2 :     IFile gridfile;
    1501           2 :     gridfile.open(targetfilename_);
    1502           2 :     std::string funcl=getLabel() + ".target";
    1503           4 :     TargetGrid_=GridBase::create(funcl,getArguments(),gridfile,false,false,true);
    1504           2 :     if(TargetGrid_->getDimension()!=getNumberOfArguments()) {
    1505           0 :       error("mismatch between dimensionality of input grid and number of arguments");
    1506             :     }
    1507           4 :     for(unsigned i=0; i<getNumberOfArguments(); ++i) {
    1508           4 :       if( getPntrToArgument(i)->isPeriodic()!=TargetGrid_->getIsPeriodic()[i] ) {
    1509           0 :         error("periodicity mismatch between arguments and input bias");
    1510             :       }
    1511             :     }
    1512           2 :   }
    1513             : 
    1514         148 :   if(getRestart()) {
    1515             :     // if this is a restart the neighbor list should be immediately updated
    1516          37 :     if(nlist_) {
    1517           1 :       nlist_update_=true;
    1518             :     }
    1519             :     // Calculate the Tiwary-Parrinello reweighting factor if we are restarting from previous hills
    1520          37 :     if(calc_rct_) {
    1521           0 :       computeReweightingFactor();
    1522             :     }
    1523             :     // Calculate all special bias quantities desired if restarting with nonzero bias.
    1524          37 :     if(calc_max_bias_) {
    1525           0 :       max_bias_ = BiasGrid_->getMaxValue();
    1526           0 :       getPntrToComponent("maxbias")->set(max_bias_);
    1527             :     }
    1528          37 :     if(calc_transition_bias_) {
    1529          13 :       transition_bias_ = getTransitionBarrierBias();
    1530          26 :       getPntrToComponent("transbias")->set(transition_bias_);
    1531             :     }
    1532             :   }
    1533             : 
    1534             :   // open grid file for writing
    1535         148 :   if(wgridstride_>0) {
    1536          19 :     gridfile_.link(*this);
    1537          19 :     if(walkers_mpi_) {
    1538           0 :       int r=0;
    1539           0 :       if(comm.Get_rank()==0) {
    1540           0 :         r=multi_sim_comm.Get_rank();
    1541             :       }
    1542           0 :       comm.Bcast(r,0);
    1543           0 :       if(r>0) {
    1544             :         gridfilename_="/dev/null";
    1545             :       }
    1546           0 :       gridfile_.enforceSuffix("");
    1547             :     }
    1548          19 :     if(mw_n_>1) {
    1549           0 :       gridfile_.enforceSuffix("");
    1550             :     }
    1551          19 :     gridfile_.open(gridfilename_);
    1552             :   }
    1553             : 
    1554             :   // open hills file for writing
    1555         148 :   hillsOfile_.link(*this);
    1556         148 :   if(walkers_mpi_) {
    1557          38 :     int r=0;
    1558          38 :     if(comm.Get_rank()==0) {
    1559          23 :       r=multi_sim_comm.Get_rank();
    1560             :     }
    1561          38 :     comm.Bcast(r,0);
    1562          38 :     if(r>0) {
    1563          25 :       ifilesnames_[mw_id_]="/dev/null";
    1564             :     }
    1565          76 :     hillsOfile_.enforceSuffix("");
    1566             :   }
    1567         148 :   if(mw_n_>1) {
    1568          12 :     hillsOfile_.enforceSuffix("");
    1569             :   }
    1570         148 :   hillsOfile_.open(ifilesnames_[mw_id_]);
    1571         148 :   if(fmt_.length()>0) {
    1572         117 :     hillsOfile_.fmtField(fmt_);
    1573             :   }
    1574         148 :   hillsOfile_.addConstantField("multivariate");
    1575         148 :   hillsOfile_.addConstantField("kerneltype");
    1576         148 :   if(doInt_) {
    1577           4 :     hillsOfile_.addConstantField("lower_int").printField("lower_int",lowI_);
    1578           4 :     hillsOfile_.addConstantField("upper_int").printField("upper_int",uppI_);
    1579             :   }
    1580             :   hillsOfile_.setHeavyFlush();
    1581             :   // output periodicities of variables
    1582         415 :   for(unsigned i=0; i<getNumberOfArguments(); ++i) {
    1583         267 :     hillsOfile_.setupPrintValue( getPntrToArgument(i) );
    1584             :   }
    1585             : 
    1586             :   bool concurrent=false;
    1587         148 :   const ActionSet&actionSet(plumed.getActionSet());
    1588        1941 :   for(const auto & p : actionSet)
    1589        1867 :     if(dynamic_cast<MetaD*>(p.get())) {
    1590             :       concurrent=true;
    1591             :       break;
    1592             :     }
    1593         148 :   if(concurrent) {
    1594          74 :     log<<"  You are using concurrent metadynamics\n";
    1595             :   }
    1596         148 :   if(rect_biasf_.size()>0) {
    1597          18 :     if(walkers_mpi_) {
    1598          12 :       log<<"  You are using RECT in its 'altruistic' implementation\n";
    1599             :     }{
    1600          18 :       log<<"  You are using RECT\n";
    1601             :     }
    1602             :   }
    1603             : 
    1604         296 :   log<<"  Bibliography "<<plumed.cite("Laio and Parrinello, PNAS 99, 12562 (2002)");
    1605         148 :   if(welltemp_) {
    1606          76 :     log<<plumed.cite("Barducci, Bussi, and Parrinello, Phys. Rev. Lett. 100, 020603 (2008)");
    1607             :   }
    1608         148 :   if(tt_specs_.is_active) {
    1609           6 :     log << plumed.cite("Dama, Rotskoff, Parrinello, and Voth, J. Chem. Theory Comput. 10, 3626 (2014)");
    1610           6 :     log << plumed.cite("Dama, Parrinello, and Voth, Phys. Rev. Lett. 112, 240602 (2014)");
    1611             :   }
    1612         148 :   if(mw_n_>1||walkers_mpi_) {
    1613          88 :     log<<plumed.cite("Raiteri, Laio, Gervasio, Micheletti, and Parrinello, J. Phys. Chem. B 110, 3533 (2006)");
    1614             :   }
    1615         148 :   if(adaptive_!=FlexibleBin::none) {
    1616          42 :     log<<plumed.cite("Branduardi, Bussi, and Parrinello, J. Chem. Theory Comput. 8, 2247 (2012)");
    1617             :   }
    1618         148 :   if(doInt_) {
    1619           4 :     log<<plumed.cite("Baftizadeh, Cossio, Pietrucci, and Laio, Curr. Phys. Chem. 2, 79 (2012)");
    1620             :   }
    1621         148 :   if(acceleration_) {
    1622           8 :     log<<plumed.cite("Pratyush and Parrinello, Phys. Rev. Lett. 111, 230602 (2013)");
    1623             :   }
    1624         148 :   if(calc_rct_) {
    1625          12 :     log<<plumed.cite("Pratyush and Parrinello, J. Phys. Chem. B, 119, 736 (2015)");
    1626             :   }
    1627         148 :   if(concurrent || rect_biasf_.size()>0) {
    1628         160 :     log<<plumed.cite("Gil-Ley and Bussi, J. Chem. Theory Comput. 11, 1077 (2015)");
    1629             :   }
    1630         148 :   if(rect_biasf_.size()>0 && walkers_mpi_) {
    1631          24 :     log<<plumed.cite("Hosek, Toulcova, Bortolato, and Spiwok, J. Phys. Chem. B 120, 2209 (2016)");
    1632             :   }
    1633         148 :   if(targetfilename_.length()>0) {
    1634           4 :     log<<plumed.cite("White, Dama, and Voth, J. Chem. Theory Comput. 11, 2451 (2015)");
    1635           4 :     log<<plumed.cite("Marinelli and Faraldo-Gómez,  Biophys. J. 108, 2779 (2015)");
    1636           4 :     log<<plumed.cite("Gil-Ley, Bottaro, and Bussi, J. Chem. Theory Comput. 12, 2790 (2016)");
    1637             :   }
    1638         148 :   if(freq_adaptive_) {
    1639           4 :     log<<plumed.cite("Wang, Valsson, Tiwary, Parrinello, and Lindorff-Larsen, J. Chem. Phys. 149, 072309 (2018)");
    1640             :   }
    1641         148 :   log<<"\n";
    1642         396 : }
    1643             : 
    1644         151 : void MetaD::readTemperingSpecs(TemperingSpecs &t_specs) {
    1645             :   // Set global tempering parameters.
    1646         151 :   parse(t_specs.name_stem + "BIASFACTOR", t_specs.biasf);
    1647         151 :   if (t_specs.biasf != -1.0) {
    1648           3 :     if (kbt_ == 0.0) {
    1649           0 :       error("Unless the MD engine passes the temperature to plumed, with tempered metad you must specify it using TEMP");
    1650             :     }
    1651           3 :     if (t_specs.biasf == 1.0) {
    1652           0 :       error("A bias factor of 1 corresponds to zero delta T and zero hill size, so it is not allowed.");
    1653             :     }
    1654           3 :     t_specs.is_active = true;
    1655           3 :     parse(t_specs.name_stem + "BIASTHRESHOLD", t_specs.threshold);
    1656           3 :     if (t_specs.threshold < 0.0) {
    1657           0 :       error(t_specs.name + " bias threshold is nonsensical");
    1658             :     }
    1659           3 :     parse(t_specs.name_stem + "ALPHA", t_specs.alpha);
    1660           3 :     if (t_specs.alpha <= 0.0 || t_specs.alpha > 1.0) {
    1661           0 :       error(t_specs.name + " decay shape parameter alpha is nonsensical");
    1662             :     }
    1663             :   }
    1664         151 : }
    1665             : 
    1666           3 : void MetaD::logTemperingSpecs(const TemperingSpecs &t_specs) {
    1667           3 :   log.printf("  %s bias factor %f\n", t_specs.name.c_str(), t_specs.biasf);
    1668           3 :   log.printf("  KbT %f\n", kbt_);
    1669           3 :   if (t_specs.threshold != 0.0) {
    1670           2 :     log.printf("  %s bias threshold %f\n", t_specs.name.c_str(), t_specs.threshold);
    1671             :   }
    1672           3 :   if (t_specs.alpha != 1.0) {
    1673           1 :     log.printf("  %s decay shape parameter alpha %f\n", t_specs.name.c_str(), t_specs.alpha);
    1674             :   }
    1675           3 : }
    1676             : 
    1677        6034 : void MetaD::readGaussians(IFile *ifile) {
    1678        6034 :   unsigned ncv=getNumberOfArguments();
    1679        6034 :   std::vector<double> center(ncv);
    1680        6034 :   std::vector<double> sigma(ncv);
    1681             :   double height;
    1682             :   int nhills=0;
    1683        6034 :   bool multivariate=false;
    1684             : 
    1685             :   std::vector<Value> tmpvalues;
    1686       18115 :   for(unsigned j=0; j<getNumberOfArguments(); ++j) {
    1687       24162 :     tmpvalues.push_back( Value( this, getPntrToArgument(j)->getName(), false ) );
    1688             :   }
    1689             : 
    1690        8572 :   while(scanOneHill(ifile,tmpvalues,center,sigma,height,multivariate)) {
    1691        2538 :     nhills++;
    1692             :     // note that for gamma=1 we store directly -F
    1693        2538 :     if(welltemp_ && biasf_>1.0) {
    1694          41 :       height*=(biasf_-1.0)/biasf_;
    1695             :     }
    1696        2538 :     addGaussian(Gaussian(multivariate,height,center,sigma));
    1697             :   }
    1698        6034 :   log.printf("      %d Gaussians read\n",nhills);
    1699       12068 : }
    1700             : 
    1701        2922 : void MetaD::writeGaussian(const Gaussian& hill, OFile&file) {
    1702        2922 :   unsigned ncv=getNumberOfArguments();
    1703        2922 :   file.printField("time",getTimeStep()*getStep());
    1704        8194 :   for(unsigned i=0; i<ncv; ++i) {
    1705        5272 :     file.printField(getPntrToArgument(i),hill.center[i]);
    1706             :   }
    1707        5844 :   hillsOfile_.printField("kerneltype","stretched-gaussian");
    1708        2922 :   if(hill.multivariate) {
    1709         892 :     hillsOfile_.printField("multivariate","true");
    1710             :     Matrix<double> mymatrix(ncv,ncv);
    1711             :     unsigned k=0;
    1712        1047 :     for(unsigned i=0; i<ncv; i++) {
    1713        1357 :       for(unsigned j=i; j<ncv; j++) {
    1714             :         // recompose the full inverse matrix
    1715         756 :         mymatrix(i,j)=mymatrix(j,i)=hill.sigma[k];
    1716         756 :         k++;
    1717             :       }
    1718             :     }
    1719             :     // invert it
    1720             :     Matrix<double> invmatrix(ncv,ncv);
    1721         446 :     Invert(mymatrix,invmatrix);
    1722             :     // enforce symmetry
    1723        1047 :     for(unsigned i=0; i<ncv; i++) {
    1724        1357 :       for(unsigned j=i; j<ncv; j++) {
    1725         756 :         invmatrix(i,j)=invmatrix(j,i);
    1726             :       }
    1727             :     }
    1728             : 
    1729             :     // do cholesky so to have a "sigma like" number
    1730             :     Matrix<double> lower(ncv,ncv);
    1731         446 :     cholesky(invmatrix,lower);
    1732             :     // loop in band form
    1733        1047 :     for(unsigned i=0; i<ncv; i++) {
    1734        1357 :       for(unsigned j=0; j<ncv-i; j++) {
    1735        1512 :         file.printField("sigma_"+getPntrToArgument(j+i)->getName()+"_"+getPntrToArgument(j)->getName(),lower(j+i,j));
    1736             :       }
    1737             :     }
    1738             :   } else {
    1739        4952 :     hillsOfile_.printField("multivariate","false");
    1740        7147 :     for(unsigned i=0; i<ncv; ++i) {
    1741        9342 :       file.printField("sigma_"+getPntrToArgument(i)->getName(),hill.sigma[i]);
    1742             :     }
    1743             :   }
    1744        2922 :   double height=hill.height;
    1745             :   // note that for gamma=1 we store directly -F
    1746        2922 :   if(welltemp_ && biasf_>1.0) {
    1747         339 :     height*=biasf_/(biasf_-1.0);
    1748             :   }
    1749        5844 :   file.printField("height",height).printField("biasf",biasf_);
    1750        2922 :   if(mw_n_>1) {
    1751        3018 :     file.printField("clock",int(std::time(0)));
    1752             :   }
    1753        2922 :   file.printField();
    1754        2922 : }
    1755             : 
    1756        5622 : void MetaD::addGaussian(const Gaussian& hill) {
    1757        5622 :   if(grid_) {
    1758         640 :     size_t ncv=getNumberOfArguments();
    1759         640 :     std::vector<unsigned> nneighb=getGaussianSupport(hill);
    1760         640 :     std::vector<Grid::index_t> neighbors=BiasGrid_->getNeighbors(hill.center,nneighb);
    1761         640 :     std::vector<double> der(ncv);
    1762         640 :     std::vector<double> xx(ncv);
    1763         640 :     if(comm.Get_size()==1) {
    1764             :       // for performance reasons and thread safety
    1765         544 :       std::vector<double> dp(ncv);
    1766       55324 :       for(size_t i=0; i<neighbors.size(); ++i) {
    1767       54780 :         Grid::index_t ineigh=neighbors[i];
    1768      158922 :         for(unsigned j=0; j<ncv; ++j) {
    1769      104142 :           der[j]=0.0;
    1770             :         }
    1771       54780 :         BiasGrid_->getPoint(ineigh,xx);
    1772       54780 :         double bias=evaluateGaussianAndDerivatives(xx,hill,der,dp);
    1773       54780 :         BiasGrid_->addValueAndDerivatives(ineigh,bias,der);
    1774             :       }
    1775             :     } else {
    1776          96 :       unsigned stride=comm.Get_size();
    1777          96 :       unsigned rank=comm.Get_rank();
    1778          96 :       std::vector<double> allder(ncv*neighbors.size(),0.0);
    1779          96 :       std::vector<double> n_der(ncv,0.0);
    1780          96 :       std::vector<double> allbias(neighbors.size(),0.0);
    1781             :       // for performance reasons and thread safety
    1782          96 :       std::vector<double> dp(ncv);
    1783       27148 :       for(unsigned i=rank; i<neighbors.size(); i+=stride) {
    1784       27052 :         Grid::index_t ineigh=neighbors[i];
    1785       81156 :         for(unsigned j=0; j<ncv; ++j) {
    1786       54104 :           n_der[j]=0.0;
    1787             :         }
    1788       27052 :         BiasGrid_->getPoint(ineigh,xx);
    1789       27052 :         allbias[i]=evaluateGaussianAndDerivatives(xx,hill,n_der,dp);
    1790       81156 :         for(unsigned j=0; j<ncv; j++) {
    1791       54104 :           allder[ncv*i+j]=n_der[j];
    1792             :         }
    1793             :       }
    1794          96 :       comm.Sum(allbias);
    1795          96 :       comm.Sum(allder);
    1796      103200 :       for(unsigned i=0; i<neighbors.size(); ++i) {
    1797      103104 :         Grid::index_t ineigh=neighbors[i];
    1798      309312 :         for(unsigned j=0; j<ncv; ++j) {
    1799      206208 :           der[j]=allder[ncv*i+j];
    1800             :         }
    1801      103104 :         BiasGrid_->addValueAndDerivatives(ineigh,allbias[i],der);
    1802             :       }
    1803             :     }
    1804             :   } else {
    1805        4982 :     hills_.push_back(hill);
    1806             :   }
    1807        5622 : }
    1808             : 
    1809         640 : std::vector<unsigned> MetaD::getGaussianSupport(const Gaussian& hill) {
    1810             :   std::vector<unsigned> nneigh;
    1811             :   std::vector<double> cutoff;
    1812         640 :   unsigned ncv=getNumberOfArguments();
    1813             : 
    1814             :   // traditional or flexible hill?
    1815         640 :   if(hill.multivariate) {
    1816             :     unsigned k=0;
    1817             :     Matrix<double> mymatrix(ncv,ncv);
    1818           0 :     for(unsigned i=0; i<ncv; i++) {
    1819           0 :       for(unsigned j=i; j<ncv; j++) {
    1820             :         // recompose the full inverse matrix
    1821           0 :         mymatrix(i,j)=mymatrix(j,i)=hill.sigma[k];
    1822           0 :         k++;
    1823             :       }
    1824             :     }
    1825             :     // Reinvert so to have the ellipses
    1826             :     Matrix<double> myinv(ncv,ncv);
    1827           0 :     Invert(mymatrix,myinv);
    1828             :     Matrix<double> myautovec(ncv,ncv);
    1829           0 :     std::vector<double> myautoval(ncv); //should I take this or their square root?
    1830           0 :     diagMat(myinv,myautoval,myautovec);
    1831             :     double maxautoval=0.;
    1832             :     unsigned ind_maxautoval;
    1833             :     ind_maxautoval=ncv;
    1834           0 :     for(unsigned i=0; i<ncv; i++) {
    1835           0 :       if(myautoval[i]>maxautoval) {
    1836             :         maxautoval=myautoval[i];
    1837             :         ind_maxautoval=i;
    1838             :       }
    1839             :     }
    1840           0 :     for(unsigned i=0; i<ncv; i++) {
    1841           0 :       cutoff.push_back(std::sqrt(2.0*dp2cutoff)*std::abs(std::sqrt(maxautoval)*myautovec(i,ind_maxautoval)));
    1842             :     }
    1843             :   } else {
    1844        1618 :     for(unsigned i=0; i<ncv; ++i) {
    1845         978 :       cutoff.push_back(std::sqrt(2.0*dp2cutoff)*hill.sigma[i]);
    1846             :     }
    1847             :   }
    1848             : 
    1849         640 :   if(doInt_) {
    1850           2 :     if(hill.center[0]+cutoff[0] > uppI_ || hill.center[0]-cutoff[0] < lowI_) {
    1851             :       // in this case, we updated the entire grid to avoid problems
    1852           2 :       return BiasGrid_->getNbin();
    1853             :     } else {
    1854           0 :       nneigh.push_back( static_cast<unsigned>(ceil(cutoff[0]/BiasGrid_->getDx()[0])) );
    1855             :       return nneigh;
    1856             :     }
    1857             :   } else {
    1858        1614 :     for(unsigned i=0; i<ncv; i++) {
    1859         976 :       nneigh.push_back( static_cast<unsigned>(ceil(cutoff[i]/BiasGrid_->getDx()[i])) );
    1860             :     }
    1861             :   }
    1862             : 
    1863             :   return nneigh;
    1864             : }
    1865             : 
    1866         285 : double MetaD::getBias(const std::vector<double>& cv) {
    1867         285 :   double bias=0.0;
    1868         285 :   if(grid_) {
    1869         203 :     bias = BiasGrid_->getValue(cv);
    1870             :   } else {
    1871          82 :     unsigned nt=OpenMP::getNumThreads();
    1872          82 :     unsigned stride=comm.Get_size();
    1873          82 :     unsigned rank=comm.Get_rank();
    1874             : 
    1875          82 :     if(!nlist_) {
    1876          82 :       #pragma omp parallel num_threads(nt)
    1877             :       {
    1878             :         #pragma omp for reduction(+:bias) nowait
    1879             :         for(unsigned i=rank; i<hills_.size(); i+=stride) {
    1880             :           bias+=evaluateGaussian(cv,hills_[i]);
    1881             :         }
    1882             :       }
    1883             :     } else {
    1884           0 :       #pragma omp parallel num_threads(nt)
    1885             :       {
    1886             :         #pragma omp for reduction(+:bias) nowait
    1887             :         for(unsigned i=rank; i<nlist_hills_.size(); i+=stride) {
    1888             :           bias+=evaluateGaussian(cv,nlist_hills_[i]);
    1889             :         }
    1890             :       }
    1891             :     }
    1892          82 :     comm.Sum(bias);
    1893             :   }
    1894             : 
    1895         285 :   return bias;
    1896             : }
    1897             : 
    1898        8395 : double MetaD::getBiasAndDerivatives(const std::vector<double>& cv, std::vector<double>& der) {
    1899        8395 :   unsigned ncv=getNumberOfArguments();
    1900        8395 :   double bias=0.0;
    1901        8395 :   if(grid_) {
    1902        1506 :     std::vector<double> vder(ncv);
    1903        1506 :     bias=BiasGrid_->getValueAndDerivatives(cv,vder);
    1904        3498 :     for(unsigned i=0; i<ncv; i++) {
    1905        1992 :       der[i]=vder[i];
    1906             :     }
    1907             :   } else {
    1908        6889 :     unsigned nt=OpenMP::getNumThreads();
    1909        6889 :     unsigned stride=comm.Get_size();
    1910        6889 :     unsigned rank=comm.Get_rank();
    1911             : 
    1912        6889 :     if(!nlist_) {
    1913        6884 :       if(hills_.size()<2*nt*stride||nt==1) {
    1914             :         // for performance reasons and thread safety
    1915        2588 :         std::vector<double> dp(ncv);
    1916        6705 :         for(unsigned i=rank; i<hills_.size(); i+=stride) {
    1917        4117 :           bias+=evaluateGaussianAndDerivatives(cv,hills_[i],der,dp);
    1918             :         }
    1919             :       } else {
    1920        4296 :         #pragma omp parallel num_threads(nt)
    1921             :         {
    1922             :           std::vector<double> omp_deriv(ncv,0.);
    1923             :           // for performance reasons and thread safety
    1924             :           std::vector<double> dp(ncv);
    1925             :           #pragma omp for reduction(+:bias) nowait
    1926             :           for(unsigned i=rank; i<hills_.size(); i+=stride) {
    1927             :             bias+=evaluateGaussianAndDerivatives(cv,hills_[i],omp_deriv,dp);
    1928             :           }
    1929             :           #pragma omp critical
    1930             :           for(unsigned i=0; i<ncv; i++) {
    1931             :             der[i]+=omp_deriv[i];
    1932             :           }
    1933             :         }
    1934             :       }
    1935             :     } else {
    1936           5 :       if(hills_.size()<2*nt*stride||nt==1) {
    1937             :         // for performance reasons and thread safety
    1938           0 :         std::vector<double> dp(ncv);
    1939           0 :         for(unsigned i=rank; i<nlist_hills_.size(); i+=stride) {
    1940           0 :           bias+=evaluateGaussianAndDerivatives(cv,nlist_hills_[i],der,dp);
    1941             :         }
    1942             :       } else {
    1943           5 :         #pragma omp parallel num_threads(nt)
    1944             :         {
    1945             :           std::vector<double> omp_deriv(ncv,0.);
    1946             :           // for performance reasons and thread safety
    1947             :           std::vector<double> dp(ncv);
    1948             :           #pragma omp for reduction(+:bias) nowait
    1949             :           for(unsigned i=rank; i<nlist_hills_.size(); i+=stride) {
    1950             :             bias+=evaluateGaussianAndDerivatives(cv,nlist_hills_[i],omp_deriv,dp);
    1951             :           }
    1952             :           #pragma omp critical
    1953             :           for(unsigned i=0; i<ncv; i++) {
    1954             :             der[i]+=omp_deriv[i];
    1955             :           }
    1956             :         }
    1957             :       }
    1958             :     }
    1959        6889 :     comm.Sum(bias);
    1960        6889 :     comm.Sum(der);
    1961             :   }
    1962             : 
    1963        8395 :   return bias;
    1964             : }
    1965             : 
    1966           0 : double MetaD::getGaussianNormalization(const Gaussian& hill) {
    1967             :   double norm=1;
    1968           0 :   unsigned ncv=hill.center.size();
    1969             : 
    1970           0 :   if(hill.multivariate) {
    1971             :     // recompose the full sigma from the upper diag cholesky
    1972             :     unsigned k=0;
    1973             :     Matrix<double> mymatrix(ncv,ncv);
    1974           0 :     for(unsigned i=0; i<ncv; i++) {
    1975           0 :       for(unsigned j=i; j<ncv; j++) {
    1976           0 :         mymatrix(i,j)=mymatrix(j,i)=hill.sigma[k]; // recompose the full inverse matrix
    1977           0 :         k++;
    1978             :       }
    1979             :       double ldet;
    1980           0 :       logdet( mymatrix, ldet );
    1981           0 :       norm = std::exp( ldet );  // Not sure here if mymatrix is sigma or inverse
    1982             :     }
    1983             :   } else {
    1984           0 :     for(unsigned i=0; i<hill.sigma.size(); i++) {
    1985           0 :       norm*=hill.sigma[i];
    1986             :     }
    1987             :   }
    1988             : 
    1989           0 :   return norm*std::pow(2*pi,static_cast<double>(ncv)/2.0);
    1990             : }
    1991             : 
    1992         192 : double MetaD::evaluateGaussian(const std::vector<double>& cv, const Gaussian& hill) {
    1993         192 :   unsigned ncv=cv.size();
    1994             : 
    1995             :   // I use a pointer here because cv is const (and should be const)
    1996             :   // but when using doInt it is easier to locally replace cv[0] with
    1997             :   // the upper/lower limit in case it is out of range
    1998             :   double tmpcv[1];
    1999             :   const double *pcv=NULL; // pointer to cv
    2000         192 :   if(ncv>0) {
    2001             :     pcv=&cv[0];
    2002             :   }
    2003         192 :   if(doInt_) {
    2004           0 :     plumed_assert(ncv==1);
    2005           0 :     tmpcv[0]=cv[0];
    2006           0 :     if(cv[0]<lowI_) {
    2007           0 :       tmpcv[0]=lowI_;
    2008             :     }
    2009           0 :     if(cv[0]>uppI_) {
    2010           0 :       tmpcv[0]=uppI_;
    2011             :     }
    2012             :     pcv=&(tmpcv[0]);
    2013             :   }
    2014             : 
    2015             :   double dp2=0.0;
    2016         192 :   if(hill.multivariate) {
    2017             :     unsigned k=0;
    2018             :     // recompose the full sigma from the upper diag cholesky
    2019             :     Matrix<double> mymatrix(ncv,ncv);
    2020           0 :     for(unsigned i=0; i<ncv; i++) {
    2021           0 :       for(unsigned j=i; j<ncv; j++) {
    2022           0 :         mymatrix(i,j)=mymatrix(j,i)=hill.sigma[k]; // recompose the full inverse matrix
    2023           0 :         k++;
    2024             :       }
    2025             :     }
    2026           0 :     for(unsigned i=0; i<ncv; i++) {
    2027           0 :       double dp_i=difference(i,hill.center[i],pcv[i]);
    2028           0 :       for(unsigned j=i; j<ncv; j++) {
    2029           0 :         if(i==j) {
    2030           0 :           dp2+=dp_i*dp_i*mymatrix(i,j)*0.5;
    2031             :         } else {
    2032           0 :           double dp_j=difference(j,hill.center[j],pcv[j]);
    2033           0 :           dp2+=dp_i*dp_j*mymatrix(i,j);
    2034             :         }
    2035             :       }
    2036             :     }
    2037             :   } else {
    2038         576 :     for(unsigned i=0; i<ncv; i++) {
    2039         384 :       double dp=difference(i,hill.center[i],pcv[i])*hill.invsigma[i];
    2040         384 :       dp2+=dp*dp;
    2041             :     }
    2042         192 :     dp2*=0.5;
    2043             :   }
    2044             : 
    2045             :   double bias=0.0;
    2046         192 :   if(dp2<dp2cutoff) {
    2047         154 :     bias=hill.height*(stretchA*std::exp(-dp2)+stretchB);
    2048             :   }
    2049             : 
    2050         192 :   return bias;
    2051             : }
    2052             : 
    2053     2408638 : double MetaD::evaluateGaussianAndDerivatives(const std::vector<double>& cv, const Gaussian& hill, std::vector<double>& der, std::vector<double>& dp_) {
    2054     2408638 :   unsigned ncv=cv.size();
    2055             : 
    2056             :   // I use a pointer here because cv is const (and should be const)
    2057             :   // but when using doInt it is easier to locally replace cv[0] with
    2058             :   // the upper/lower limit in case it is out of range
    2059             :   const double *pcv=NULL; // pointer to cv
    2060             :   double tmpcv[1]; // tmp array with cv (to be used with doInt_)
    2061     2408638 :   if(ncv>0) {
    2062             :     pcv=&cv[0];
    2063             :   }
    2064     2408638 :   if(doInt_) {
    2065         602 :     plumed_assert(ncv==1);
    2066         602 :     tmpcv[0]=cv[0];
    2067         602 :     if(cv[0]<lowI_) {
    2068         118 :       tmpcv[0]=lowI_;
    2069             :     }
    2070         602 :     if(cv[0]>uppI_) {
    2071         360 :       tmpcv[0]=uppI_;
    2072             :     }
    2073             :     pcv=&(tmpcv[0]);
    2074             :   }
    2075             : 
    2076             :   bool int_der=false;
    2077     2408638 :   if(doInt_) {
    2078         602 :     if(cv[0]<lowI_ || cv[0]>uppI_) {
    2079             :       int_der=true;
    2080             :     }
    2081             :   }
    2082             : 
    2083             :   double dp2=0.0;
    2084             :   double bias=0.0;
    2085     2408638 :   if(hill.multivariate) {
    2086             :     unsigned k=0;
    2087             :     // recompose the full sigma from the upper diag cholesky
    2088             :     Matrix<double> mymatrix(ncv,ncv);
    2089      161635 :     for(unsigned i=0; i<ncv; i++) {
    2090      162513 :       for(unsigned j=i; j<ncv; j++) {
    2091       81476 :         mymatrix(i,j)=mymatrix(j,i)=hill.sigma[k]; // recompose the full inverse matrix
    2092       81476 :         k++;
    2093             :       }
    2094             :     }
    2095      161635 :     for(unsigned i=0; i<ncv; i++) {
    2096       81037 :       dp_[i]=difference(i,hill.center[i],pcv[i]);
    2097      162513 :       for(unsigned j=i; j<ncv; j++) {
    2098       81476 :         if(i==j) {
    2099       81037 :           dp2+=dp_[i]*dp_[i]*mymatrix(i,j)*0.5;
    2100             :         } else {
    2101         439 :           double dp_j=difference(j,hill.center[j],pcv[j]);
    2102         439 :           dp2+=dp_[i]*dp_j*mymatrix(i,j);
    2103             :         }
    2104             :       }
    2105             :     }
    2106       80598 :     if(dp2<dp2cutoff) {
    2107       77683 :       bias=hill.height*std::exp(-dp2);
    2108       77683 :       if(!int_der) {
    2109      155673 :         for(unsigned i=0; i<ncv; i++) {
    2110             :           double tmp=0.0;
    2111      156594 :           for(unsigned j=0; j<ncv; j++) {
    2112       78604 :             tmp += dp_[j]*mymatrix(i,j)*bias;
    2113             :           }
    2114       77990 :           der[i]-=tmp*stretchA;
    2115             :         }
    2116             :       } else {
    2117           0 :         for(unsigned i=0; i<ncv; i++) {
    2118           0 :           der[i]=0.;
    2119             :         }
    2120             :       }
    2121       77683 :       bias=stretchA*bias+hill.height*stretchB;
    2122             :     }
    2123             :   } else {
    2124     6974478 :     for(unsigned i=0; i<ncv; i++) {
    2125     4646438 :       dp_[i]=difference(i,hill.center[i],pcv[i])*hill.invsigma[i];
    2126     4646438 :       dp2+=dp_[i]*dp_[i];
    2127             :     }
    2128     2328040 :     dp2*=0.5;
    2129     2328040 :     if(dp2<dp2cutoff) {
    2130     1356159 :       bias=hill.height*std::exp(-dp2);
    2131     1356159 :       if(!int_der) {
    2132     4059698 :         for(unsigned i=0; i<ncv; i++) {
    2133     2703778 :           der[i]-=bias*dp_[i]*hill.invsigma[i]*stretchA;
    2134             :         }
    2135             :       } else {
    2136         478 :         for(unsigned i=0; i<ncv; i++) {
    2137         239 :           der[i]=0.;
    2138             :         }
    2139             :       }
    2140     1356159 :       bias=stretchA*bias+hill.height*stretchB;
    2141             :     }
    2142             :   }
    2143             : 
    2144     2408638 :   return bias;
    2145             : }
    2146             : 
    2147        2736 : double MetaD::getHeight(const std::vector<double>& cv) {
    2148        2736 :   double height=height0_;
    2149        2736 :   if(welltemp_) {
    2150         275 :     double vbias = getBias(cv);
    2151         275 :     if(biasf_>1.0) {
    2152         259 :       height = height0_*std::exp(-vbias/(kbt_*(biasf_-1.0)));
    2153             :     } else {
    2154             :       // notice that if gamma=1 we store directly -F
    2155          16 :       height = height0_*std::exp(-vbias/kbt_);
    2156             :     }
    2157             :   }
    2158        2736 :   if(dampfactor_>0.0) {
    2159          18 :     plumed_assert(BiasGrid_);
    2160          18 :     double m=BiasGrid_->getMaxValue();
    2161          18 :     height*=std::exp(-m/(kbt_*(dampfactor_)));
    2162             :   }
    2163        2736 :   if (tt_specs_.is_active) {
    2164          60 :     double vbarrier = transition_bias_;
    2165          60 :     temperHeight(height, tt_specs_, vbarrier);
    2166             :   }
    2167        2736 :   if(TargetGrid_) {
    2168          18 :     double f=TargetGrid_->getValue(cv)-TargetGrid_->getMaxValue();
    2169          18 :     height*=std::exp(f/kbt_);
    2170             :   }
    2171        2736 :   return height;
    2172             : }
    2173             : 
    2174          60 : void MetaD::temperHeight(double& height, const TemperingSpecs& t_specs, const double tempering_bias) {
    2175          60 :   if (t_specs.alpha == 1.0) {
    2176          80 :     height *= std::exp(-std::max(0.0, tempering_bias - t_specs.threshold) / (kbt_ * (t_specs.biasf - 1.0)));
    2177             :   } else {
    2178          40 :     height *= std::pow(1 + (1 - t_specs.alpha) / t_specs.alpha * std::max(0.0, tempering_bias - t_specs.threshold) / (kbt_ * (t_specs.biasf - 1.0)), - t_specs.alpha / (1 - t_specs.alpha));
    2179             :   }
    2180          60 : }
    2181             : 
    2182        8435 : void MetaD::calculate() {
    2183             :   // this is because presently there is no way to properly pass information
    2184             :   // on adaptive hills (diff) after exchanges:
    2185        8435 :   if(adaptive_==FlexibleBin::diffusion && getExchangeStep()) {
    2186           0 :     error("ADAPTIVE=DIFF is not compatible with replica exchange");
    2187             :   }
    2188             : 
    2189        8435 :   const unsigned ncv=getNumberOfArguments();
    2190        8435 :   std::vector<double> cv(ncv);
    2191       21082 :   for(unsigned i=0; i<ncv; ++i) {
    2192       12647 :     cv[i]=getArgument(i);
    2193             :   }
    2194             : 
    2195        8435 :   if(nlist_) {
    2196           5 :     nlist_steps_++;
    2197           5 :     if(getExchangeStep()) {
    2198           0 :       nlist_update_=true;
    2199             :     } else {
    2200          11 :       for(unsigned i=0; i<ncv; ++i) {
    2201           8 :         double d = difference(i, cv[i], nlist_center_[i]);
    2202           8 :         double nk_dist2 = d*d/nlist_dev2_[i];
    2203           8 :         if(nk_dist2>nlist_param_[1]) {
    2204           2 :           nlist_update_=true;
    2205           2 :           break;
    2206             :         }
    2207             :       }
    2208             :     }
    2209           5 :     if(nlist_update_) {
    2210           4 :       updateNlist();
    2211             :     }
    2212             :   }
    2213             : 
    2214             :   double ene = 0.;
    2215        8435 :   std::vector<double> der(ncv,0.);
    2216        8435 :   if(biasf_!=1.0) {
    2217        8395 :     ene = getBiasAndDerivatives(cv,der);
    2218             :   }
    2219        8435 :   setBias(ene);
    2220       21082 :   for(unsigned i=0; i<ncv; i++) {
    2221       12647 :     setOutputForce(i,-der[i]);
    2222             :   }
    2223             : 
    2224        8435 :   if(calc_work_) {
    2225          10 :     getPntrToComponent("work")->set(work_);
    2226             :   }
    2227        8435 :   if(calc_rct_) {
    2228         220 :     getPntrToComponent("rbias")->set(ene - reweight_factor_);
    2229             :   }
    2230             :   // calculate the acceleration factor
    2231        8435 :   if(acceleration_&&!isFirstStep_) {
    2232         329 :     acc_ += static_cast<double>(getStride()) * std::exp(ene/(kbt_));
    2233         329 :     const double mean_acc = acc_/((double) getStep());
    2234         329 :     getPntrToComponent("acc")->set(mean_acc);
    2235        8435 :   } else if (acceleration_ && isFirstStep_ && acc_restart_mean_ > 0.0) {
    2236           2 :     acc_ = acc_restart_mean_ * static_cast<double>(getStep());
    2237           2 :     if(freq_adaptive_) {
    2238             :       // has to be done here if restarting, as the acc is not defined before
    2239           1 :       updateFrequencyAdaptiveStride();
    2240             :     }
    2241             :   }
    2242        8435 : }
    2243             : 
    2244        6239 : void MetaD::update() {
    2245             :   // adding hills criteria (could be more complex though)
    2246             :   bool nowAddAHill;
    2247        6239 :   if(getStep()%current_stride_==0 && !isFirstStep_) {
    2248             :     nowAddAHill=true;
    2249             :   } else {
    2250             :     nowAddAHill=false;
    2251        3503 :     isFirstStep_=false;
    2252             :   }
    2253             : 
    2254        6239 :   unsigned ncv=getNumberOfArguments();
    2255        6239 :   std::vector<double> cv(ncv);
    2256       16690 :   for(unsigned i=0; i<ncv; ++i) {
    2257       10451 :     cv[i] = getArgument(i);
    2258             :   }
    2259             : 
    2260             :   double vbias=0.;
    2261        6239 :   if(calc_work_) {
    2262           5 :     vbias=getBias(cv);
    2263             :   }
    2264             : 
    2265             :   // if you use adaptive, call the FlexibleBin
    2266             :   bool multivariate=false;
    2267        6239 :   if(adaptive_!=FlexibleBin::none) {
    2268         778 :     flexbin_->update(nowAddAHill);
    2269             :     multivariate=true;
    2270             :   }
    2271             : 
    2272             :   std::vector<double> thissigma;
    2273        6239 :   if(nowAddAHill) {
    2274             :     // add a Gaussian
    2275        2736 :     double height=getHeight(cv);
    2276             :     // returns upper diagonal inverse
    2277        2736 :     if(adaptive_!=FlexibleBin::none) {
    2278         748 :       thissigma=flexbin_->getInverseMatrix();
    2279             :     }
    2280             :     // returns normal sigma
    2281             :     else {
    2282        2362 :       thissigma=sigma0_;
    2283             :     }
    2284             : 
    2285             :     // In case we use walkers_mpi, it is now necessary to communicate with other replicas.
    2286        2736 :     if(walkers_mpi_) {
    2287             :       // Allocate arrays to store all walkers hills
    2288         174 :       std::vector<double> all_cv(mpi_nw_*ncv,0.0);
    2289         174 :       std::vector<double> all_sigma(mpi_nw_*thissigma.size(),0.0);
    2290         174 :       std::vector<double> all_height(mpi_nw_,0.0);
    2291         174 :       std::vector<int>    all_multivariate(mpi_nw_,0);
    2292         174 :       if(comm.Get_rank()==0) {
    2293             :         // Communicate (only root)
    2294          99 :         multi_sim_comm.Allgather(cv,all_cv);
    2295          99 :         multi_sim_comm.Allgather(thissigma,all_sigma);
    2296             :         // notice that if gamma=1 we store directly -F so this scaling is not necessary:
    2297          99 :         multi_sim_comm.Allgather(height*(biasf_>1.0?biasf_/(biasf_-1.0):1.0),all_height);
    2298          99 :         multi_sim_comm.Allgather(int(multivariate),all_multivariate);
    2299             :       }
    2300             :       // Share info with group members
    2301         174 :       comm.Bcast(all_cv,0);
    2302         174 :       comm.Bcast(all_sigma,0);
    2303         174 :       comm.Bcast(all_height,0);
    2304         174 :       comm.Bcast(all_multivariate,0);
    2305             : 
    2306             :       // Flying Gaussian
    2307         174 :       if (flying_) {
    2308          54 :         hills_.clear();
    2309          54 :         comm.Barrier();
    2310             :       }
    2311             : 
    2312         696 :       for(unsigned i=0; i<mpi_nw_; i++) {
    2313             :         // actually add hills one by one
    2314         522 :         std::vector<double> cv_now(ncv);
    2315         522 :         std::vector<double> sigma_now(thissigma.size());
    2316        1566 :         for(unsigned j=0; j<ncv; j++) {
    2317        1044 :           cv_now[j]=all_cv[i*ncv+j];
    2318             :         }
    2319        1674 :         for(unsigned j=0; j<thissigma.size(); j++) {
    2320        1152 :           sigma_now[j]=all_sigma[i*thissigma.size()+j];
    2321             :         }
    2322             :         // notice that if gamma=1 we store directly -F so this scaling is not necessary:
    2323         522 :         double fact=(biasf_>1.0?(biasf_-1.0)/biasf_:1.0);
    2324         522 :         Gaussian newhill=Gaussian(all_multivariate[i],all_height[i]*fact,cv_now,sigma_now);
    2325         522 :         addGaussian(newhill);
    2326         522 :         if(!flying_) {
    2327         360 :           writeGaussian(newhill,hillsOfile_);
    2328             :         }
    2329         522 :       }
    2330             :     } else {
    2331        2562 :       Gaussian newhill=Gaussian(multivariate,height,cv,thissigma);
    2332        2562 :       addGaussian(newhill);
    2333        2562 :       writeGaussian(newhill,hillsOfile_);
    2334        2562 :     }
    2335             : 
    2336             :     // this is to update the hills neighbor list
    2337        2736 :     if(nlist_) {
    2338           4 :       nlist_update_=true;
    2339             :     }
    2340             :   }
    2341             : 
    2342             :   // this should be outside of the if block in case
    2343             :   // mw_rstride_ is not a multiple of stride_
    2344        6239 :   if(mw_n_>1 && getStep()%mw_rstride_==0) {
    2345        3012 :     hillsOfile_.flush();
    2346             :   }
    2347             : 
    2348        6239 :   if(calc_work_) {
    2349           5 :     if(nlist_) {
    2350           0 :       updateNlist();
    2351             :     }
    2352           5 :     double vbias1=getBias(cv);
    2353           5 :     work_+=vbias1-vbias;
    2354             :   }
    2355             : 
    2356             :   // dump grid on file
    2357        6239 :   if(wgridstride_>0&&(getStep()%wgridstride_==0||getCPT())) {
    2358             :     // in case old grids are stored, a sequence of grids should appear
    2359             :     // this call results in a repetition of the header:
    2360          91 :     if(storeOldGrids_) {
    2361          40 :       gridfile_.clearFields();
    2362             :     }
    2363             :     // in case only latest grid is stored, file should be rewound
    2364             :     // this will overwrite previously written grids
    2365             :     else {
    2366          51 :       int r = 0;
    2367          51 :       if(walkers_mpi_) {
    2368           0 :         if(comm.Get_rank()==0) {
    2369           0 :           r=multi_sim_comm.Get_rank();
    2370             :         }
    2371           0 :         comm.Bcast(r,0);
    2372             :       }
    2373          51 :       if(r==0) {
    2374          51 :         gridfile_.rewind();
    2375             :       }
    2376             :     }
    2377          91 :     BiasGrid_->writeToFile(gridfile_);
    2378             :     // if a single grid is stored, it is necessary to flush it, otherwise
    2379             :     // the file might stay empty forever (when a single grid is not large enough to
    2380             :     // trigger flushing from the operating system).
    2381             :     // on the other hand, if grids are stored one after the other this is
    2382             :     // no necessary, and we leave the flushing control to the user as usual
    2383             :     // (with FLUSH keyword)
    2384          91 :     if(!storeOldGrids_) {
    2385          51 :       gridfile_.flush();
    2386             :     }
    2387             :   }
    2388             : 
    2389             :   // if multiple walkers and time to read Gaussians
    2390        6239 :   if(mw_n_>1 && getStep()%mw_rstride_==0) {
    2391       12048 :     for(int i=0; i<mw_n_; ++i) {
    2392             :       // don't read your own Gaussians
    2393        9036 :       if(i==mw_id_) {
    2394        3012 :         continue;
    2395             :       }
    2396             :       // if the file is not open yet
    2397        6024 :       if(!(ifiles_[i]->isOpen())) {
    2398             :         // check if it exists now and open it!
    2399           9 :         if(ifiles_[i]->FileExist(ifilesnames_[i])) {
    2400           9 :           ifiles_[i]->open(ifilesnames_[i]);
    2401           9 :           ifiles_[i]->reset(false);
    2402             :         }
    2403             :         // otherwise read the new Gaussians
    2404             :       } else {
    2405        6015 :         log.printf("  Reading hills from %s:",ifilesnames_[i].c_str());
    2406        6015 :         readGaussians(ifiles_[i].get());
    2407        6015 :         ifiles_[i]->reset(false);
    2408             :       }
    2409             :     }
    2410             :     // this is to update the hills neighbor list
    2411        3012 :     if(nlist_) {
    2412           0 :       nlist_update_=true;
    2413             :     }
    2414             :   }
    2415             : 
    2416             :   // Recalculate special bias quantities whenever the bias has been changed by the update.
    2417        6239 :   bool bias_has_changed = (nowAddAHill || (mw_n_ > 1 && getStep() % mw_rstride_ == 0));
    2418        6239 :   if (calc_rct_ && bias_has_changed && getStep()%(stride_*rct_ustride_)==0) {
    2419         102 :     computeReweightingFactor();
    2420             :   }
    2421        6239 :   if (calc_max_bias_ && bias_has_changed) {
    2422           0 :     max_bias_ = BiasGrid_->getMaxValue();
    2423           0 :     getPntrToComponent("maxbias")->set(max_bias_);
    2424             :   }
    2425        6239 :   if (calc_transition_bias_ && bias_has_changed) {
    2426         260 :     transition_bias_ = getTransitionBarrierBias();
    2427         520 :     getPntrToComponent("transbias")->set(transition_bias_);
    2428             :   }
    2429             : 
    2430             :   // Frequency adaptive metadynamics - update hill addition frequency
    2431        6239 :   if(freq_adaptive_ && getStep()%fa_update_frequency_==0) {
    2432         151 :     updateFrequencyAdaptiveStride();
    2433             :   }
    2434        6239 : }
    2435             : 
    2436             : /// takes a pointer to the file and a template std::string with values v and gives back the next center, sigma and height
    2437        8572 : bool MetaD::scanOneHill(IFile* ifile, std::vector<Value>& tmpvalues, std::vector<double>& center, std::vector<double>& sigma, double& height, bool& multivariate) {
    2438             :   double dummy;
    2439        8572 :   multivariate=false;
    2440       17144 :   if(ifile->scanField("time",dummy)) {
    2441        2538 :     unsigned ncv=tmpvalues.size();
    2442        7568 :     for(unsigned i=0; i<ncv; ++i) {
    2443        5030 :       ifile->scanField( &tmpvalues[i] );
    2444        5030 :       if( tmpvalues[i].isPeriodic() && ! getPntrToArgument(i)->isPeriodic() ) {
    2445           0 :         error("in hills file periodicity for variable " + tmpvalues[i].getName() + " does not match periodicity in input");
    2446        5030 :       } else if( tmpvalues[i].isPeriodic() ) {
    2447             :         std::string imin, imax;
    2448           0 :         tmpvalues[i].getDomain( imin, imax );
    2449             :         std::string rmin, rmax;
    2450           0 :         getPntrToArgument(i)->getDomain( rmin, rmax );
    2451           0 :         if( imin!=rmin || imax!=rmax ) {
    2452           0 :           error("in hills file periodicity for variable " + tmpvalues[i].getName() + " does not match periodicity in input");
    2453             :         }
    2454             :       }
    2455        5030 :       center[i]=tmpvalues[i].get();
    2456             :     }
    2457             :     // scan for kerneltype
    2458        2538 :     std::string ktype="stretched-gaussian";
    2459        5076 :     if( ifile->FieldExist("kerneltype") ) {
    2460        5058 :       ifile->scanField("kerneltype",ktype);
    2461             :     }
    2462        2538 :     if( ktype=="gaussian" ) {
    2463          12 :       noStretchWarning();
    2464        2526 :     } else if( ktype!="stretched-gaussian") {
    2465           0 :       error("non Gaussian kernels are not supported in MetaD");
    2466             :     }
    2467             :     // scan for multivariate label: record the actual file position so to eventually rewind
    2468             :     std::string sss;
    2469        5076 :     ifile->scanField("multivariate",sss);
    2470        2538 :     if(sss=="true") {
    2471           0 :       multivariate=true;
    2472        2538 :     } else if(sss=="false") {
    2473        2538 :       multivariate=false;
    2474             :     } else {
    2475           0 :       plumed_merror("cannot parse multivariate = "+ sss);
    2476             :     }
    2477        2538 :     if(multivariate) {
    2478           0 :       sigma.resize(ncv*(ncv+1)/2);
    2479             :       Matrix<double> upper(ncv,ncv);
    2480             :       Matrix<double> lower(ncv,ncv);
    2481           0 :       for(unsigned i=0; i<ncv; i++) {
    2482           0 :         for(unsigned j=0; j<ncv-i; j++) {
    2483           0 :           ifile->scanField("sigma_"+getPntrToArgument(j+i)->getName()+"_"+getPntrToArgument(j)->getName(),lower(j+i,j));
    2484           0 :           upper(j,j+i)=lower(j+i,j);
    2485             :         }
    2486             :       }
    2487             :       Matrix<double> mymult(ncv,ncv);
    2488             :       Matrix<double> invmatrix(ncv,ncv);
    2489           0 :       mult(lower,upper,mymult);
    2490             :       // now invert and get the sigmas
    2491           0 :       Invert(mymult,invmatrix);
    2492             :       // put the sigmas in the usual order: upper diagonal (this time in normal form and not in band form)
    2493             :       unsigned k=0;
    2494           0 :       for(unsigned i=0; i<ncv; i++) {
    2495           0 :         for(unsigned j=i; j<ncv; j++) {
    2496           0 :           sigma[k]=invmatrix(i,j);
    2497           0 :           k++;
    2498             :         }
    2499             :       }
    2500             :     } else {
    2501        7568 :       for(unsigned i=0; i<ncv; ++i) {
    2502       10060 :         ifile->scanField("sigma_"+getPntrToArgument(i)->getName(),sigma[i]);
    2503             :       }
    2504             :     }
    2505             : 
    2506        2538 :     ifile->scanField("height",height);
    2507        2538 :     ifile->scanField("biasf",dummy);
    2508        5076 :     if(ifile->FieldExist("clock")) {
    2509        4710 :       ifile->scanField("clock",dummy);
    2510             :     }
    2511        5076 :     if(ifile->FieldExist("lower_int")) {
    2512           0 :       ifile->scanField("lower_int",dummy);
    2513             :     }
    2514        5076 :     if(ifile->FieldExist("upper_int")) {
    2515           0 :       ifile->scanField("upper_int",dummy);
    2516             :     }
    2517        2538 :     ifile->scanField();
    2518             :     return true;
    2519             :   } else {
    2520             :     return false;
    2521             :   }
    2522             : }
    2523             : 
    2524         102 : void MetaD::computeReweightingFactor() {
    2525         102 :   if(biasf_==1.0) { // in this case we have no bias, so reweight factor is 0.0
    2526           0 :     getPntrToComponent("rct")->set(0.0);
    2527           0 :     return;
    2528             :   }
    2529             : 
    2530         102 :   double Z_0=0; //proportional to the integral of exp(-beta*F)
    2531         102 :   double Z_V=0; //proportional to the integral of exp(-beta*(F+V))
    2532         102 :   double minusBetaF=biasf_/(biasf_-1.)/kbt_;
    2533         102 :   double minusBetaFplusV=1./(biasf_-1.)/kbt_;
    2534         102 :   if (biasf_==-1.0) { //non well-tempered case
    2535           0 :     minusBetaF=1./kbt_;
    2536             :     minusBetaFplusV=0;
    2537             :   }
    2538         102 :   max_bias_=BiasGrid_->getMaxValue(); //to avoid exp overflow
    2539             : 
    2540         102 :   const unsigned rank=comm.Get_rank();
    2541         102 :   const unsigned stride=comm.Get_size();
    2542      920504 :   for (Grid::index_t t=rank; t<BiasGrid_->getSize(); t+=stride) {
    2543      920402 :     const double val=BiasGrid_->getValue(t);
    2544      920402 :     Z_0+=std::exp(minusBetaF*(val-max_bias_));
    2545      920402 :     Z_V+=std::exp(minusBetaFplusV*(val-max_bias_));
    2546             :   }
    2547         102 :   comm.Sum(Z_0);
    2548         102 :   comm.Sum(Z_V);
    2549             : 
    2550         102 :   reweight_factor_=kbt_*std::log(Z_0/Z_V)+max_bias_;
    2551         204 :   getPntrToComponent("rct")->set(reweight_factor_);
    2552             : }
    2553             : 
    2554         273 : double MetaD::getTransitionBarrierBias() {
    2555             :   // If there is only one well of interest, return the bias at that well point.
    2556         273 :   if (transitionwells_.size() == 1) {
    2557           0 :     double tb_bias = getBias(transitionwells_[0]);
    2558           0 :     return tb_bias;
    2559             : 
    2560             :     // Otherwise, check for the least barrier bias between all pairs of wells.
    2561             :     // Note that because the paths can be considered edges between the wells' nodes
    2562             :     // to make a graph and the path barriers satisfy certain cycle inequalities, it
    2563             :     // is sufficient to look at paths corresponding to a minimal spanning tree of the
    2564             :     // overall graph rather than examining every edge in the graph.
    2565             :     // For simplicity, I chose the star graph with center well 0 as the spanning tree.
    2566             :     // It is most efficient to start the path searches from the wells that are
    2567             :     // expected to be sampled last, so transitionwell_[0] should correspond to the
    2568             :     // starting well. With this choice the searches will terminate in one step until
    2569             :     // transitionwell_[1] is sampled.
    2570             :   } else {
    2571             :     double least_transition_bias;
    2572         273 :     std::vector<double> sink = transitionwells_[0];
    2573         273 :     std::vector<double> source = transitionwells_[1];
    2574         273 :     least_transition_bias = BiasGrid_->findMaximalPathMinimum(source, sink);
    2575         273 :     for (unsigned i = 2; i < transitionwells_.size(); i++) {
    2576           0 :       if (least_transition_bias == 0.0) {
    2577             :         break;
    2578             :       }
    2579           0 :       source = transitionwells_[i];
    2580           0 :       double curr_transition_bias = BiasGrid_->findMaximalPathMinimum(source, sink);
    2581           0 :       least_transition_bias = fmin(curr_transition_bias, least_transition_bias);
    2582             :     }
    2583             :     return least_transition_bias;
    2584             :   }
    2585             : }
    2586             : 
    2587         154 : void MetaD::updateFrequencyAdaptiveStride() {
    2588         154 :   plumed_massert(freq_adaptive_,"should only be used if frequency adaptive metadynamics is enabled");
    2589         154 :   plumed_massert(acceleration_,"frequency adaptive metadynamics can only be used if the acceleration factor is calculated");
    2590         154 :   const double mean_acc = acc_/((double) getStep());
    2591         154 :   int tmp_stride= stride_*floor((mean_acc/fa_min_acceleration_)+0.5);
    2592         154 :   if(mean_acc >= fa_min_acceleration_) {
    2593         129 :     if(tmp_stride > current_stride_) {
    2594           6 :       current_stride_ = tmp_stride;
    2595             :     }
    2596             :   }
    2597         154 :   if(fa_max_stride_!=0 && current_stride_>fa_max_stride_) {
    2598           0 :     current_stride_=fa_max_stride_;
    2599             :   }
    2600         154 :   getPntrToComponent("pace")->set(current_stride_);
    2601         154 : }
    2602             : 
    2603        8435 : bool MetaD::checkNeedsGradients()const {
    2604        8435 :   if(adaptive_==FlexibleBin::geometry) {
    2605         192 :     if(getStep()%stride_==0 && !isFirstStep_) {
    2606             :       return true;
    2607             :     } else {
    2608         109 :       return false;
    2609             :     }
    2610             :   } else {
    2611             :     return false;
    2612             :   }
    2613             : }
    2614             : 
    2615           4 : void MetaD::updateNlist() {
    2616             :   // no need to check for neighbors
    2617           4 :   if(hills_.size()==0) {
    2618           0 :     return;
    2619             :   }
    2620             : 
    2621             :   // here we generate the neighbor list
    2622           4 :   nlist_hills_.clear();
    2623             :   std::vector<Gaussian> local_flat_nl;
    2624           4 :   unsigned nt=OpenMP::getNumThreads();
    2625           4 :   if(hills_.size()<2*nt) {
    2626             :     nt=1;
    2627             :   }
    2628           4 :   #pragma omp parallel num_threads(nt)
    2629             :   {
    2630             :     std::vector<Gaussian> private_flat_nl;
    2631             :     #pragma omp for nowait
    2632             :     for(unsigned k=0; k<hills_.size(); k++) {
    2633             :       double dist2=0;
    2634             :       for(unsigned i=0; i<getNumberOfArguments(); i++) {
    2635             :         const double d=difference(i,getArgument(i),hills_[k].center[i])/hills_[k].sigma[i];
    2636             :         dist2+=d*d;
    2637             :       }
    2638             :       if(dist2<=nlist_param_[0]*dp2cutoff) {
    2639             :         private_flat_nl.push_back(hills_[k]);
    2640             :       }
    2641             :     }
    2642             :     #pragma omp critical
    2643             :     local_flat_nl.insert(local_flat_nl.end(), private_flat_nl.begin(), private_flat_nl.end());
    2644             :   }
    2645           4 :   nlist_hills_ = local_flat_nl;
    2646             : 
    2647             :   // here we set some properties that are used to decide when to update it again
    2648          12 :   for(unsigned i=0; i<getNumberOfArguments(); i++) {
    2649           8 :     nlist_center_[i]=getArgument(i);
    2650             :   }
    2651             :   std::vector<double> dev2;
    2652           4 :   dev2.resize(getNumberOfArguments(),0);
    2653          46 :   for(unsigned k=0; k<nlist_hills_.size(); k++) {
    2654         126 :     for(unsigned i=0; i<getNumberOfArguments(); i++) {
    2655          84 :       const double d=difference(i,getArgument(i),nlist_hills_[k].center[i]);
    2656          84 :       dev2[i]+=d*d;
    2657             :     }
    2658             :   }
    2659          12 :   for(unsigned i=0; i<getNumberOfArguments(); i++) {
    2660           8 :     if(dev2[i]>0.) {
    2661           8 :       nlist_dev2_[i]=dev2[i]/static_cast<double>(nlist_hills_.size());
    2662             :     } else {
    2663           0 :       nlist_dev2_[i]=hills_.back().sigma[i]*hills_.back().sigma[i];
    2664             :     }
    2665             :   }
    2666             : 
    2667             :   // we are done
    2668           4 :   getPntrToComponent("nlker")->set(nlist_hills_.size());
    2669           4 :   getPntrToComponent("nlsteps")->set(nlist_steps_);
    2670           4 :   nlist_steps_=0;
    2671           4 :   nlist_update_=false;
    2672           4 : }
    2673             : 
    2674             : }
    2675             : }

Generated by: LCOV version 1.16